
RWTH Aachen University
Faculty of Mechanical Engineering

Institute for Automotive Engineering
Univ.-Prof. Dr.-Ing. Lutz Eckstein

Bachelor Thesis

Continuously Learning Prediction of Pedestrian Movements at Intersections with
Recurrent Neural Networks

submitted by:

Till Beemelmanns, matriculation number: 32 06 02

supervised by:

Julian Bock, M.Sc.

Aachen, 30 March 2017

Contents and results of this thesis are for internal use only. RWTH Aachen University is holder of all copyrights.
Further distribution to a third party, either partly or entirely, is to be approved by the supervising institute.

Contents 4

Contents

1 Introduction . 7

1.1 Content and Structure . 8

2 State of the Art . 9

2.1 Prediction of Pedestrian Trajectories . 9

2.2 Prediction of Pedestrian Trajectories from Driver’s Perspective 10

2.3 Related models for Sequence Prediction . 12

2.4 Continuously Learning Neural Networks . 13

3 Artificial Neural Networks . 14

3.1 Background . 14

3.2 Feedforward Neural Networks . 15

3.2.1 Training and Backpropagation . 17

3.2.2 Dropout . 19

3.3 Recurrent Neural Networks . 20

3.3.1 Simple Recurrent Neural Networks . 21

3.3.2 Training of Recurrent Networks . 22

3.3.3 Long Short Term Memory Networks . 23

3.3.4 Bidirectional Recurrent Neural Networks . 26

3.3.5 Stacked Recurrent Neural Networks . 27

3.4 Prediction Network Architectures . 28

3.4.1 Sequence to Sequence Model . 30

3.4.2 Simple Sequence to Sequence Model . 31

3.4.3 Sequence to Sequence Model with Peek . 31

3.4.4 Attention Sequence to Sequence Model . 31

4 Research Objective and Approach . 33

4.1 Analysis of Existing Prediction Models . 33

4.2 Research Questions . 34

4.3 Approach . 35

4.4 Definition of Performance Evaluation . 36

Contents 5

5 Model Design and Implementation . 38

5.1 General Code Setup . 38

5.2 Datasets . 39

5.3 Data Pre-processing . 40

5.4 Model Details . 42

5.5 LSTM Configuration Details . 43

5.6 Training & Evaluation . 43

5.7 Hyperparameter & Hyperparameter Tuning . 44

5.8 Parameter Analysis . 45

5.9 Stability Analysis . 46

5.10 Continuous Learning . 46

6 Results and Evaluation . 49

6.1 Initial Hyperparameter Parameter Search . 49

6.2 Architecture Comparison . 50

6.3 Optimiser Comparison . 50

6.4 Comparison with Baseline Models . 51

6.5 Parameter Dependencies . 57

6.6 Prediction Stability . 61

6.7 Incorrect Predictions . 64

6.8 Continuous Learning . 64

6.8.1 Case “Construction Work” . 64

6.8.2 Case “Blocked Road” . 69

6.8.3 Evaluation Continuous Learning . 70

6.9 Model Evaluation Latency . 71

7 Conclusion and Outlook . 72

8 Literature . 74

9 List of Abbreviations . 82

10 List of Symbols . 83

11 Appendix . 84

11.1 Attachment A: Default Configuration File . 84

Contents 6

11.2 Attachment B: Neural network activation functions 85

11.3 Attachment C: Loss functions . 86

11.4 Attachment D: Dataset details . 87

11.4.1 ETH Datasets . 87

11.4.2 Vissim Datasets . 88

11.4.3 Laser Datasets . 89

11.4.4 Aldenhoven Testing Center Dataset . 90

1 Introduction 7

1 Introduction

Approximately 620.000 Vulnerable Road Users die every year on world wide roads [WOR17].
To remedy this situation and reduce the number of people affected, vehicle manufacturers have
implemented active and passive pedestrian safety systems. Nevertheless, heavy accidents
frequently occur in urban intersection scenarios which can be considered as one of the most
complex driving scenarios [ADA17b]. An urban scenario is usually difficult to capture with the
sensor information of a single car. Due to the existence of buildings, trees and other vehicles,
the visual-, laser- and radar-based onboard sensor systems have a limited effective range. But,
the precise knowledge about other traffic participants is essential for ADAS to securely evalu-
ate the current situation and determine an optimal reaction. In order to overcome locally limited
detection ranges, cooperative perception systems are currently focused in research [SEE14]
[GMB16]. An elevated position of the infrastructure sensors should ensure a complete cover-
age of an urban intersection and enables seamless tracking of arbitrary road users. Currently
developed V2X communication technology such as IEEE 802.11p or LTE-V2X could be used
for an effective traffic information broadcasting from stationary infrastructure to vehicle and vice-
versa [BOH08]. Consequently, locally available knowledge about a situation at an intersection
of a single road user can be merged with the broadcasted information for road safety purposes
and efficient trajectory planning.

Automotive companies and research institutes have started several R&D projects that investi-
gate the potentials of infrastructure-based safety systems. For example, the Ko-FAS research
initiative (cooperative driver assistance systems), which is supported by several automotive
companies, investigates the potentials of an intelligent intersection that is equipped with a net-
work of distributed sensors [MEI14]. Further projects are SADA (Smart Adaptive Data Aggrega-
tion) [DEU17], Bosch Local Clouds [GMB16] and I2EASE (Intelligence for efficiently electrified
and automated driving through sensor networking) [I2E17].

Intelligent intersections that are equipped with permanently active traffic sensors are ideal for
data-driven approaches due to continuous data collection. Information about positions, move-
ment dynamics and other specific data of road users can be gathered over a long period of
time, enabling predictions of future situations with the help of machine learning algorithms.
The precise anticipation of future positions would give safety assistance systems and vehi-
cle drivers more time to react to dangerous situations and thereby prevent possible collisions
with other road users. Beside road safety aspects, further applications of movement prediction
is the improvement of urban traffic flow and the development of intelligent automated driving
functions.

For automated driving functions, the prediction of pedestrians in urban scenarios is particular
relevant. Pedestrians can be easily overseen or obscured by obstacles and are due to their
nature unprotected. A collision between vehicles and pedestrian often results in fatal injuries.
On german roads, 95% of all fatal pedestrians accidents in the year 2015 where found at urban
scenarios [ADA17c] and further the total number of injured or killed pedestrians has slightly

1 Introduction 8

increased in the last 4 years [ADA17a]. Therefore, there exists the need to develop new safety
systems that are able to predict human movements at poorly observable urban scenarios with
the help of infrastructure sensors and predictive machine learning. Consequently, in this thesis
the prediction of future trajectories of pedestrians with the help of machine learning algorithms
will be investigated.

Traffic flow and movement patterns at urban intersections undergo sometimes temporary chang-
es. Road works, construction work, blocked roads or parades could temporarily influence the
pedestrians movement behaviour. A static prediction model that learned movement charac-
teristics by a fixed dataset from a previously captured time interval could fail in these cases.
A reliable prediction model that is also capable of dealing with extraordinary events needs a
self-learning mechanism that captures temporal evolution of a specific scene. In addition to
that, the continuous observation of an intersection with stationary sensor leads to a perma-
nently increasing dataset, that could make machine learning algorithms inefficient to train as
local computing power at the intersection might be limited. Thus, it is necessary to develop an
algorithm that is able to apply a data stream on a machine learning prediction model in such
a fashion that already learned and validated pieces of information are preserved, whereas un-
known information are added to a dynamic training dataset.

1.1 Content and Structure

This thesis is subdivided into six parts. Section 2 gives a brief summary about different classes
of prediction models that deal with pedestrian motion. A state of the art review about Artificial
Neural Networks can be found in section 3. Especially, Recurrent Neural Networks and neural
networks for prediction tasks are discussed which where later implemented for the human mo-
tion anticipation. Section 4 gives the research objective and the approach of this work. Model
design and implementation details of the machine learning methodology are presented in sec-
tion 5. The model prediction quality is discussed and compared with other models in section 6.
Finally, section 7 summaries this work and gives an outlook for future research.

2 State of the Art 9

2 State of the Art

In the following chapter, a brief review about existing techniques for the prediction of pedestrian
movements is given, followed by a presentation and discussion of machine learning techniques
for sequence prediction tasks. Section 2.1 deals with different general approaches for human
motion modelling. In this section, social forces and machine learning models are reviewed.
Predictive models, that anticipate pedestrians future movement based only on the sensor mea-
surements of a vehicle, are described in section 2.2. In the following section 2.3, different
approaches that are not directly intended to predict pedestrian movements, but which are ca-
pable to model sequential predictions with machine learning algorithms in a different context,
are discussed. Finally, section 2.4 gives an overview on existing techniques for continuously
learning neural networks.

2.1 Prediction of Pedestrian Trajectories

Since automated driving robots and advanced driver assistance systems (ADAS) will play an in-
creasingly important role in our daily lives, anticipating pedestrians future movements is impor-
tant to improve road safety and trajectory planning [BRO16] [KEL14] [TAM10]. Human move-
ments patterns are often uncertain and they depend from many individual influencing factors.
Thus, it is a challenging task to design a model that is able to forecast future movements of
pedestrians. In the following, an overview of literature that deals with the prediction of human
motion is given.

At the beginning of the 1990s, scientists developed first pedestrians and traffic models which
were inspired by physical gas-kinetics [HEL90]. One of the first social-forces models was in-
troduced by Helbing et al. [HEL97]. This simple model described the social-forces, similar to
energy potentials, that have usually influence on one pedestrian such as the desired destina-
tion of one individual, the distance to other pedestrians with respect to the private sphere and
an attraction effect. Helbing et al. demonstrated in computer simulations, that their model was
able to describe nonlinear interactions of pedestrians.

Nowadays, social-forces models are still a matter of interest to researchers. In the year 2010,
Luber et al. [LUB10] developed a more sophisticated approach that considers beside usual
social influences between humans also environmental constraints. Yamaguchi et al. [YAM11]
modelled successfully movement patterns of groups with social forces. Handcrafted energy
potentials regarding, social grouping, collision avoidance, intended destination of one individual
and environment constraints where joined and evaluated in a energy minimising fashion in
order to make a prediction for future time steps. A social-aware robot navigation system for
collision avoidance for an shared environment was proposed in [TAM10]. The authors of this
article used a social-force method for the estimation of the pedestrians behaviour and used
this information to plan secure trajectories for robots. Inspired by the social-forces model,
Robicquet et al. [ROB16] used an machine learning approach that utilises real pedestrian
movement data in order to train a social sensitivity feature. This energy potential describes in
which manner pedestrians and other individuals avoid each other and this leads in contrast to

2 State of the Art 10

previous models to a higher flexibility in interaction possibilities. Thus, the model is capable
to differentiate between different navigation styles of the individuals such as aggressive, mild
and neutral behaviour. Further, the captured navigation styles are used for improved both
forecasting models and a multi-target tracking.

A data driven approach that makes use of drone video footages of dense places was recently
proposed by Ballan et al. [BAL16]. The researchers formulated an observed scene as a dis-
cretised navigation map that is assigned with rich information about movement behaviours of
different road users. A stochastic model computed for each discrete element of the map the
probabilities for moving from the current element to one of the neighbour elements with a prob-
able velocity. In addition to that, specific functional properties of the scene such as grass,
street or sidewalks are also embedded in the model. These properties where identified by an
visual scene algorithm. With a given initial position and speed for a pedestrian it is possible to
estimate its future path by evaluating the probabilities over the navigation map.

Walker et al. [WAL14] proposed a pure visual idea that relays on a large database of scene
videos. Their public available framework, analyses an arbitrary road scene (e.g. a parking
lot) by considering mid-level moving elements (e.g. cars, pedestrians) on a static background.
The change of visual appearance in time is trained in an unsupervised manner with a decision
theoretic algorithm. The visual prediction considers for a single forecast of one target object
also surrounding moving elements. This technique allows a visualisation of possible future
movements for traffic participants with a hallucinating image processing and with a prediction
heat map.

In 2016, Alahi et al. [ALA16] proposed a deep learning model that is capable of predicting
human movement with a so called “Social-LSTM”. In their approach they considered that the
movement of a person in a crowded scenario is usually influenced by its direct neighbours.
In contrast to other social models they did not used handcrafted social forces functions, but
they designed a new deep learning end-to-end architecture that allows an interaction between
spatially proximal sequences through a pooling layer. The pooling layer ensures that a Long
Short-term Memory (LSTM) cell has access to the hidden-states of all other LSTMs in a specific
radius and this information is used for the prediction of the next time step. The authors of this
paper evaluated their model on publicly available pedestrian tracking datasets and they could
show that the deep learning network was able to anticipate future movements of individuals
caused by social interactions among them.

2.2 Prediction of Pedestrian Trajectories from Driver’s Perspective

The precise knowledge of the location and future estimated position of pedestrians at inter-
sections gives car drivers and ADAS more time to react to dangerous situations and thereby
prevent possible collisions. Automobile manufacturers have developed a variety of pedestrian
models based on car’s sensors. In the following, a review about different approaches with
camera and laser measurements is given.

2 State of the Art 11

Brouwer et al. [BRO16] compared several existing pedestrian motion models for collision avoid-
ance systems. The researches classified each approach into one of four classes. For each of
these classes, one model is selected, implemented and benchmarked. To ensure comparabil-
ity, all models generate a probability grid for an identical set of recorded situations. Thereby,
each cell of the grid is associated with a probability that describes the possible presence of
the pedestrian in this cell with respect to time. Dynamic based Pedestrian Models (class I)
consider measurement of pedestrian’s dynamics in order to estimate a maximal area of the
possible future position. The authors used for their comparison a simple motion model with
fixed acceleration. This results in a circular probability map around the walker. Second class
models are described as Physiological Grid Models. In addition to the pedestrian’s position,
further properties of the human movement are used. Angular velocity, movement direction and
empirically measured maximal and minimal accelerations for different situations are taken into
account. As a result, the generated probability area has a conical shape. Head Orientation
Grid Models (class III) assume that future pedestrian’s motion depends on the direction it is
looking at. A computer vision algorithm determines the head orientation and the model uses
this information jointly with the pedestrian’s dynamics to estimate the position probabilities. Un-
certainties of the prediction are modelled by a Gaussian function that scales the probability
area proportionally to the prediction time. An approach by Rehder et al. [REH15] can be cat-
egorised as a class III model. The researchers proposed a model that fuses environmental
influence factors, pedestrian orientation and dynamics in order to solve a trajectory planning
problem. Visual sensors capture the pedestrian’s current state and estimate on this basis the
probability distribution over a discretised domain. This is realised by a Monte Carlo particle
filter with respect to uncertainties in the visual measurements.
Finally, class IV models (Pedestrian Moving Behaviour Grid) take typical human movements
into consideration. The human behaviour is influenced by proximal static environmental fea-
tures such as obstacles, sidewalks or crosswalks. A trajectory planning algorithm uses envi-
ronmental information to calculate the distributed probabilities.
Brouwer et al. evaluated the different models and proposed a new model architecture that com-
bines probabilities taken from all models. Consequently, the fused probability grid is computed
by the weighted sum of each of the grids. It was shown that the fusion approach performed
better than a single model.

A different stereo-visual approach based on previously labelled motion data was proposed by
Keller et al. [KEL14]. The researchers considered in their publication the classification problem
of a pedestrian that either crosses the road or stops walking. The only sensor source is a
stereo video camera from driver’s perspective. A visual feature extraction algorithm computes
the position and motion of the pedestrian. Consequently, a probabilistic matching framework
is applied on the current observed trajectory with respect to previously captured trajectories
stored in a database. With the help of the stored trajectories, the prediction model classifies
the motion of the pedestrian and is able predict its future path.

Another predictive model for road crossing was introduced by Hashimoto et al. [HAS15]. The
authors of this article focussed on an urban signalised intersection scenario and used a ma-

2 State of the Art 12

chine learning network for their approach. A Dynamical Bayesian Network (DBN) anticipates
pedestrian’s behaviour based on current traffic signals, visual data, position and velocity of the
pedestrian. All information streams were jointly merged in a stochastic manner. The predic-
tion network was able to estimate pedestrian’s decision after observing the input information
streams for two seconds. Nevertheless, the data generation for the experiments in this paper
where captured on a single intersection and the motion prediction considers only two states:
waiting and crossing.

2.3 Related models for Sequence Prediction

A search in the relevant literature yielded that sequence learning approaches have been im-
plemented successfully in various interdisciplinary research fields. Several papers that were
recently publicised examined the capabilities of recurrent neural networks such as Long Short-
term Memory (LSTM) [HOC97] and Gated Recurrent Units (GRU) for sequence prediction
tasks. Very successful applications of these RNN can be found for machine translation [BAH14]
[CHO14] [SUT14], caption generation [VIN14], chatbots [VIN15] and image classification [KRI12].
In many cases, modern RNN architectures outperformed traditional approaches and this shows
that RNN are suitable for modelling complex long range sequential dependencies. In the follow-
ing, an overview about recent literature is given that deals in a general manner with recurrent
neural networks which are trained on positional sequential datasets in order to make future
predictions.

Graves [GRA13] used Long Short-term Memory recurrent neural networks for several sequence
generating tasks with complex long-ranged time dependencies. In particular, he trained the
LSTM network with handwriting sequences based on tracked pen-tip trajectories. Graves was
then able to show, that the trained net is capable of generating handwriting samples and in
another setting he could compute the probability distribution of future pen tip locations. To the
best of the authors knowledge, this approach is the first attempt of training X-Y positional data
with a RNN-LSTM and this idea inspired other researchers to train RNN with tracking datasets,
as for instance Alahi et al. [ALA16].

A sensor fusion architecture for car driver manoeuvres prediction was presented in [JAI15] by
Jain et al. The researchers gathered a huge labeled dataset consisting of different sensory
streams such as vehicle dynamics, surrounding information and two-dimensional trajectories
from tracked landmarks points of the drivers face. These temporal sequences were concate-
nated together and were used to train an end-to-end deep learning network that computes
the probabilities of the drivers future manoeuvres such as right turn or left line change. This
classifier was compared with several other baseline models and the authors of this publication
reported that the proposed LSTM architecture in combination with the facial positional data
caused an increase of the performance and lead to state-of-the-art results.

Even in sports sciences deep learning algorithms are applied. Shah et al. [SHA16] trained a
RNN with real tracking data from basketball trajectories in order to determine whether a three-

2 State of the Art 13

point shot hits the bucket or not. In this classification problem, the researchers compared a
RNN that was trained with sequential X-Y-Z coordinates with a complex handcrafted model that
took in addition to the positional data also features such as angle, velocity and distance to the
bucket as an input. It was reported that the RNN outperformed the traditional model and the
RNN was able to predict with a high probability a miss or a hit after observing the trajectory for
500 milliseconds.

2.4 Continuously Learning Neural Networks

Neural networks are commonly trained on fixed datasets. In the neural network research com-
munity, static publicly available datasets are used to compare the performance of different net
architectures and to develop new models [PEL09] [ROB16]. However, the human brain learns
continuously something new, since we live a permanently changing world [KÄD16]. In context
of this thesis, one can ask for example the question how to fit a predictive neural net when
a specific urban scenario is perturbed due to construction zones or blocked roads. Only a
few studies exist that deal with neural nets that are trained with ongoing partially changing or
growing datasets.

Xiao et al. [XIA14] considered a convolutional neural network for image classification with an
incrementally increasing labeled dataset. In their new approach, an algorithm hierarchically
expands the convolutional network leading to bigger net capacities. A study on continuously
learning neural nets with incoming data streams was performed by Käding et al. [KÄD16].
The researchers investigated the impact of training parameters for newly added image data
and their corresponding labels. They found out, that the effort of retraining a neural net with
new data can be decreased by reducing the number of weight update iterations. Furthermore,
Käding et al. state that neglecting already known data during retraining leads to overfitting of
the new added data. Thus, robust retraining in a continuous fashion should be performed with
a fraction of new and old data.

The above presented works for continuous learning concerned only convolutional neural net-
works for image labelling tasks. Hence, a similar analysis for recurrent neural networks for
sequence generation is performed in section 5.10.

3 Artificial Neural Networks 14

3 Artificial Neural Networks

This chapter provides an overview over artificial neural networks with a particular focus on
recurrent neural networks for sequence learning. In the first subsection of this chapter the
fundamental background of neural nets is described. Section 3.2 introduces simple feedforward
neural networks and basic concepts for training. Section 3.3 gives a detailed description of
recurrent neural networks and their application in sequence learning. Finally, in section 3.4 the
introduced recurrent networks are used to construct prediction network architectures that are
able to model complex sequence tasks.

3.1 Background

Artificial Neural Networks (ANNs) are a class of nature-inspired computational systems. An
ANN consist of a large collection of artificial neurons that are connected with each other through
weighted directed edges that imitate the synapses and neurons of a biological brain [BAS00].
The weights of the edges represent the strength of the synapses between the neurons [BAS00].
The computational complexity and the memory storage of a single neuron is limited. However,
the connection of hundred thousand of artificial neurons arranged in a network compound can
achieve remarkable artificial intelligence like performance. The computation of an ANN is trig-
gered when an input signal is send to one or several nodes that spread their output to their
connected neighbour nodes, which again forward their signal throughout the whole network. In
a biological network this activation is an electric or chemical impulse whereby the signal in an
artificial network is simulated by a real number, mostly in range between �1 and 1 [BAS00].
At the initial state of an ANN all weights are randomly chosen and is known as an untrained
network [RUM86]. This situation is comparable to a brain of a human new-born in which the
majority of the neurons are grown but the connecting synapses are not yet entirely formed.
Typically, ANNs are used to approximate unknown complex functions and are trained with the
help of very large datasets that are observations of a particular input and their corresponding
output of these unknown models. Thereby, the weights of the network are modified in such
a way that the artificial network model fits best to the observations. This methodology is also
known as supervised learning [GRA12].

An artificial neuron, usually described as node or unit, computes its output value by applying
an activation function to the weighted sum of its input values [BAS00]. Each input xj0 is hereby
linked with its specific weight wjj0 . Note that the index notation jj0 denotes the weight which
receives the edge from node j0 and emerges into the unit j. In doing so, we adopt the notation
that was previously used in literature [HOC97] [LIP15]. The weighted sum is then added to a
bias term bj and the whole sum is put through the activation function fj of the unit (cf. figure
3-1),

aj =
X

j0

wjj0xj0 + bj Eq. 3-1

⌫j = fj (aj) . Eq. 3-2

The weights wjj0 and the bias bj form the parameters of the neuron that are randomly assigned

3 Artificial Neural Networks 15

at initial state. It is also common to omit the bias term and to consider an additional input x0
with fixed value 1.0. This results in a additional weight wj0 plays the role of bj . The activation
function fj or transfer function is often a sigmoid, tanh or ReLu function (cf. Attachment 11.2).
These functions commonly are nonlinear, monotonic and continuously differentiable which are
important properties for computing the derivative during the training process. In scenarios
where the neural net is trained to classify an input usually the softmax function is applied as it
considers K outcome possibilities and computes the normed probabilities for each of them.

softmax(~z)k =
ezk

P
K

k0=1 e
zk0

for k = 1, . . . ,K Eq. 3-3

x2 wj2 ⌃ fj

Activation
function

⌫j

Output

x1 wj1

x3 wj3

Weights

Bias
bj

Inputs

Fig. 3-1: The output of the artificial neuron j is a weighted sum of its inputs which is put
through an activation function. In this example the neuron has three input edges. In
theory, the number of input signals is not bounded. Figure adapted from [GER03b].

Moreover, in some cases a linear function is also used as an activation function especially for
regression tasks. It is worth to mention that in the later implementation a slight different sigmoid

function is used which is called hard sigmoid. This has the benefit that it does not involve
the computationally expensive exponential function (cf. Attachment 11.2) [COU15] [THE16] .
Since activation functions (or the derivatives) are evaluated very often during the training, this
approximation decreases computational runtime.

There exists a variety of possibilities to arrange and structure artificial neurons and the infor-
mation flow between them. In this way it is possible to differentiate between several types of
ANNs. These types have typically strong different properties and show their best performance
in a specialised task. For example, convolutional neural networks achieved state of the art
performance in computer visions tasks [SER11], where recurrent neural networks were able to
outperform traditional natural language processing models [CHO14] [SUT14].

3.2 Feedforward Neural Networks

One of the simplest way for arranging artificial neural neurons are Feedforward Neural Networks
(FNNs). In such a network system, the neurons are ordered in vertical, straight, forward layers
where each unit of one layer is connected to every node in the following layer. This implies
that cyclic connections or recurrent edges, that would create a loop inside a graph, are not

3 Artificial Neural Networks 16

allowed. Hence, the information flow inside the graph is directed only in one direction. In
contrast, recurrent neural nets have a feedback loops or also recurrent edges, resulting in a
cyclic graph (cf. Section 3.3). Figure 3-2 visualises a simple fully connected feedforward net
with six input nodes that are organised in the input layer. When the input x = (X1, . . . , xn)

is passed to the net, the input layer propagates its results to the nodes of the hidden layer,
which then in turn transfer their activation to the output layer, respectively the output units. This
successive evaluation of the neural net is referred to as the forward pass.

x1

x2

x3

x4

x5

x6

ŷ1

Hidden
layer

Input
layer

Output
layer

Fig. 3-2: Simple fully connected feedforward neural net with six input nodes and one output
unit.

FNN are used for regression and classification task and are usually trained with the supervised
learning methodology. Hornik proved in the universal approximation theorem [HOR91] that
a standard feedforward network is an universal approximator with arbitrary accuracy for any
continuous, bounded function with the assumption that the net consists of a sufficient number
of hidden units. The proof holds for almost any common activation function.

Neural networks with more than one hidden layer are called Deep Neural Networks (DNNs) or
Multi Layer Perceptrons (MPL). On the one hand, additional layers in a deep net allow to model
more complicated dependencies between input and output, but on the other hand, deep nets
are more difficult to train [BA14]. Figure 3-3 depicts a deep fully connected network with three
hidden layer.

A very popular subclass of feedforward neural nets are Convolutional Neural Networks (CNNs),
that are designed to capture local features of the input, especially for computer vision data.
CNNs reached astonishing results in image classification and human face recognition [KRI12]
[SER11] [LAW97].

Although we distinguish here between different types of neural nets, feedforward and recurrent

3 Artificial Neural Networks 17

x1

x2

x3

x4

x5

x6

ŷ1

ŷ2

First
hidden
layer

Second
hidden
layer

Third
hidden
layer

Input
layer

Output
layer

Fig. 3-3: Fully connected deep feedforward neural net with three hidden layers and two output
units. Note that there is no connection between units from the same layer.

neural nets, it is also possible to combine them into one architecture, as shown by the image
caption generator established by Vinyals et al. [VIN14]. Vinyal uses a convolutional and a
recurrent neural net, linked to one encoder-decoder architecture (cf. Section 3.4).

3.2.1 Training and Backpropagation

Supervised training for neural nets describes the method how the weights of the neurons are
modified in a such way that the nets output ŷ fits the target observation y of the input x. Hereby,
it is necessary to define a norm that measures the accuracy between these two quantities
which is usually denoted by loss function L(ŷ, y) (different loss functions that are used later in
this thesis can be found in Attachment 11.3).

There exist diverse training methods, but the most successful and most applied algorithm is
backpropagation [RUM86]. Since a neural net can be considered as a big composite function,
it is possible to compute the partial derivative of the loss function after each parameter of the
neurons @L(ŷ,y)

@wij
. This is effectively done by the recursive application of the chain rule beginning

at the output layer and progressing backwards through the hidden layers until the input layer is
reached.

In the first step of the backpropagation algorithm the forward pass is executed by feeding an
input x to the input neurons and compute for every hidden unit its output ⌫j and also the nets
prediction ŷ. As it is required that the activation function is differentiable, it is possible to com-
pute for each output neuron k its error signal �k,

�k =
@L(ŷk, yk)

@ŷk
f 0
k(ak). Eq. 3-4

3 Artificial Neural Networks 18

For the sake of convenience, a simple squared error as a loss function is chosen,

L(ŷ, y) =
1

2

X

k

(yk � ŷk)
2 Eq. 3-5

whose straightforward derivative is inserted in equation 3-4:

�k = (y � ŷ)f 0
k(ak). Eq. 3-6

The error signal for each hidden neuron can be determined in a recursive process with the help
of the error signals of the units from the previous layer

�j = f 0
j(aj)

X

k

�kwkj . Eq. 3-7

The formulations of �k and �j are now used to derive the desired equation for the loss function
with respect to each weight. First we can express the partial derivative of L(ŷ, y) by using the
chain rule

@L(ŷ, y)

@wij

=
@L(ŷ, y)

@⌫j

@⌫j
@aj

@aj
@wij

. Eq. 3-8

The last factor of this term can be rewritten with equation 3-1 as

@aj
@wij

=
@

@wij

0

@
X

j0

wjj0xj0 + bj

1

A = xj0 Eq. 3-9

for the nodes in the input layer and for the hidden units the derivative is equal to ⌫j0 . The second
term of equation 3-8 is

@⌫j
@aj

=
@

@aj
fj(aj) = f 0

j(aj) Eq. 3-10

and if we put equations 3-9, 3-7 and 3-6 together, we obtain finally the error function with
respect to an arbitrary weight wjj0 ,

@L(ŷ, y)

@wjj0
= �j⌫j0 Eq. 3-11

with

�j =

8
<

:
f 0
j
(aj)

P
k
�kwkj , for j in hidden layer

f 0
j
(aj)(y � ŷ), for j in output layer.

Eq. 3-12

Usually, the aim of the training procedure is to minimise the loss function. Hence, a gradient de-
cent optimiser such as the stochastic gradient decent (SGD) updates each weight with learning
rate ⌘,

�wjj0 = �⌘
@L(ŷ, y)

@wjj0
Eq. 3-13

with 0 < ⌘ 1. For faster computation, the gradient update is performed after evaluating a
batch of input and target pairs using a fixed batch size. For simplicity, a batch size equal to one
is used in equation 3-13.

The downside of the described technique is that the loss function is often non-convex with
local minima. Hence, an optimisation algorithm that follows always the steepest gradient might

3 Artificial Neural Networks 19

easily get stuck without reaching the global optimum. Therefore, a large number of heuristic
algorithms were developed in order to improve the standard SGD. Popular examples for these
optimisers are AdaGrad [DUC11], AdaDelta [ZEI12], RMSprop [TIE12] and Adam [KIN14].
These methods make use of adaptive learning rates and a momentum that helps accelerate
the convergence of the optimisation and to overcome local extrema.

Nowadays, the complex optimisation procedure is carried out by automatic symbolic differenti-
ation for arbitrary valid net structures with highly optimised libraries such as Theano [THE16].
The computations are usually executed on GPU accelerators that enable training for big nets
using a lot of data in acceptable runtime.

The training process is usually executed on a big dataset that is divided into a training split and a
test split. As a rule of thumb, the size of the training data should be around 70-80% of the whole
dataset, whereas the test split consists of the remaining 20-30%. The optimisation process is
commonly organised in epochs. Executing one epoch means that the whole test dataset runs
once through the net. Simultaneously, the weights are updated via backpropagation when parts
of the test split with size “batch size” have passed the net. The test split is intended to evaluate
the models final quality. Accordingly, the neural network is not trained on the test split.

Training is often performed with several epochs feeding the training data split repeatedly into
the neural net. Choosing the right number of epochs in order to obtain an optimal fitted neural
network is sometimes a balancing act. If not enough epochs are executed, the net might suffer
from underfitting which means that the neural has not yet reached its full potential. On the
contrary, when the net is trained for too many epochs it reaches a state of overfitting. Hence,
the neural network would not be able to generalise the underlying trend of the dataset and it
performs poor on the test split. Several regularisation techniques were introduced to address
these problems. In the following section, the most successful method will be explained.

3.2.2 Dropout

When an artificial neural network is trained too intensively it tends to overfit. Dropout is an
effective regularisation technique to overcome this problem. This methodology is likewise an
artificial neuron (see above) inspired from a phenomenon out of nature [SRI14]. During sex-
ual reproduction randomly mutated maternal and paternal gametes fuse together and form an
individual with a unique combination of genes. Hence, different sets of genes of both parents
are randomly combined. After the mixability theory [LIV10], each gene becomes more robust,
since it can not rely on the presence of the same genetic set at all times [SRI14]. Thus, genetic
diversity allows evolution to avoid dead-ends and to optimise fitness of species.

The dropout technique adapts the concept of the mixability theory. During a training step, each
unit is randomly dropped with a probability of q = 1 � p. Every dropped node (in the hidden,
input and output layer) and its corresponding connections is ignored during the ongoing forward
and backward pass, which is referred to as training a thinned network. The “survived” nodes

3 Artificial Neural Networks 20

must instantly develop a correlation among the other randomly present units with the effect that
each unit becomes more robust by reducing extraordinary strong co-adaptations to a subset of
nodes. Moreover, this method initiates cooperations among a diversity of nodes. After training,
the neural net is then evaluated without any dropout probability, as usual.

Srivastava et al. [SRI14] reported that adding dropout to neural nets drastically improves their
performance, especially for convolutional neural networks. As shown in the same publication,
dropout outperformed other regularisation methods such as weight decay, max-norm regular-
isation and early stopping. However, training a neural net with dropout takes 2-3 times longer
than the same network without dropout.

Figure 3-4 shows a simple feedforward neural net that has a dropout probability of p = 0.5.
Randomly chosen nodes are deactivated in order to force some of the nodes to “cooperate”
with other randomly chosen units of the whole network.

x1

x2

x3

x4

x5

x6

y1

y2

First
hidden
layer

Second
hidden
layer

Third
hidden
layer

Input
layer

Output
layer

Fig. 3-4: Same deep feedforward neural network like in figure 3-3 but thinned with a dropout
probability of p = 0.5. All units that have a cross and their connecting edges have
been dropped in the current training batch. Figure adapted from [SRI14].

3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a subclass of Deep Neural Networks (DNNs). RNNs
have the unique feature that edges transfer data from the previous time step to the current
state. These loops, called recurrent edges, allow the information to persist over time and enable
complex, time-dependent sequence modelling. In contrast to DNNs RNNS do not require a
fixed dimensionality of the input and the output. This makes RNNs a suitable choice for tackling
tasks with differing sequence lengths.

In Section 3.3.1 a simple minimalistic recurrent network is presented. The application of back-

3 Artificial Neural Networks 21

propagation for recurrent nets is shown in 3.3.2. In section 3.3.3, Long Short Time Memory
Networks (LSTMs) modern and more complex RNN architectures that are capable of overcom-
ing disadvantages of traditional recurrent networks are discussed. For completeness Bidirec-
tional recurrent neural networks (BRNNs) are explained in section 3.3.4. Section 3.3.5 presents
“deep” recurrent neural networks. Before we start, a few terms and their mathematical notations
are introduced.

Since we consider discrete sequences that are sampled at certain time steps indexed by t, we
define the input sequence,

X = (x1, x2, . . . xT) Eq. 3-14

and the corresponding output sequence,

Y = (y1, y2, . . . yT) Eq. 3-15

where each data point xt,yt is real vector with fixed dimensionality

xt 2 Rn, yt 2 Rn. Eq. 3-16

For simplicity, the vectors of the input and the output have the same dimensionality and the
sequences X and Y have equal length. In fact RNNs do not need a fixed sequence length as
they can deal with different input and output dimensions. When a RNN computes predicted
output values, the sequence is denoted in the following by Ŷ and ŷt respectively.

3.3.1 Simple Recurrent Neural Networks

In 1990, Elman proposed the Simple Recurrent Network (SRN) which was able to capture
structures in sequences [ELM90]. In that seminal work, Elman reported a SRN that manages
to learn the correct output of a sequential XOR operator. Furthermore, the net was capable
of predicting the likelihood of occurrences of words in a sentence. The main feature of the
“Elman-network” is a hidden context layer that is fed by recurrent feedback which induces a
time-dependent memory. The SRN is almost equivalent to the following simple architecture.

The first neural node of the basic recurrent neural cell computes at time step t with the current
input xt and the previous hidden state ht�1 the actual hidden state ht (cf. equation 3-17). After
that, the activation function is applied on the new hidden state leading to the output ŷt (cf.
equations 3-18). It is obvious to see, that an input at time t � 1 can influence the output of ŷt
and the following outputs through the recurrent connections. The following equations define the
described minimalistic RNN:

ht = tanh(Wxhxt +Whhht�1 + bh) Eq. 3-17

ŷt = �(Whyht + by), Eq. 3-18

while the weight matrices Wxh|hh|hy and the bias vectors bh|y build the parameters of the cell
(e.g. Wxh denotes the input-hidden weight matrix). During the training process these param-
eters are slowly modified in order to fit the likelihood of the input and output of the net. Here

3 Artificial Neural Networks 22

� represents the softmax activation function. The recurrent model is visualised by Figure 3-5,
where the yellow rectangles represent the neural layers from equations 3-17 and 3-18 respec-
tively. The recurrent process can get unfold across time as shown in Figure 3-6.

Fig. 3-5: Simple recurrent cell at time step t, biases bh|y are not shown. Figure adapted from
Olah [OLA15].

Fig. 3-6: The recurrent cell from figure 3-5 unfolded along three time steps t � 1, t and t + 1.
Figure adapted from Olah [OLA15].

3.3.2 Training of Recurrent Networks

Training RNNs is performed using a similar procedure as training FNNs. Considering the un-
folded structure in Figure 3-6, the net is basically a deep network with two hidden layers and
a hidden state that is transferred from every node to the next at each time step. The gradi-
ent update algorithm Back-Propagation Through Time (BPTT), which was derived by Weberos
[WER90], makes use of this unfolding through time. It then proceeds in the same way as train-
ing a FNN by applying back-propagation. Since the net is a nested composite function, the
partial derivatives of the error @L(ŷ,y)

@wij
with respect to the weights is used to update W and b

during the training.

Learning long-range dependencies with RNNs is nevertheless a difficult task. Simple RNNs
suffer from the exploding and vanishing gradients problem, which has a huge negative impacts
on net’s performance. This well studied phenomenons were first investigated by Bengio et al.
[BEN94]. They occurs during the BPTT procedure across many time steps. The temporal evo-
lution of the gradient depends on the size of the weights and can lead either to an exponential
increased or to a vanished gradient. In the first case, the weights may become oscillating, and
in the second case the learning process of long sequences becomes very slow or stops work-
ing [HOC01] (cf. Figure 3-7). This has the effect that the net is unable to store and access

3 Artificial Neural Networks 23

long-range dependencies. A mathematical analysis of this shortcoming was performed by Pas-
canu et al. [PAS12]. In their study they derived a correlation between the biggest eigenvalue of
the weight matrices and behaviour of the system. Consequently, Pascanu proposed a method
that clips or regularises the gradient which would lead to a stable error signal and improved
performance.

Fig. 3-7: The vanishing gradient problem occurs, if the biggest eigenvalue of the weight matrix
on the recurrent edge is smaller than 1.0. This leads to a decaying influence of the
input x1 over the time. The influence is schematically represented in this figure by
the shades of green (where dark green represents high influence and bright green
low impact). The influence of the input at the beginning vanishes until time step
six removing any association between x1 and ŷ6. Visualisation similar to Graves
[GRA12].

To prevent the gradients from exploding, the Truncated Back-Propagation Through Time (TBPPT)
algorithm was developed by Williams et al. [WIL90]. The algorithm “processes the sequence
one time step at a time and every k1 time steps, it runs BPTT for k2 time steps” [SUT13].
Consequently, this technique damps back flowing error signals but also cuts long-range depen-
dencies. The RNN architecture explained in the next section was designed to overcome these
shortcomings.

3.3.3 Long Short Term Memory Networks

Long Short Term Memory networks also called LSTMs where introduced by Hochreiter &
Schmidhuber [HOC97] in the late 90’s and are known for their good performance in storing
and remembering information for a long period of time outperforming standard RNN. Their re-
cent success was caused by the increasing price-performance ratio of GPUs and the advances
of deep learning algorithms such as optimisation techniques and parallel computing enabling
large-scale learning [LIP15]. In recent literature, LSTMs reached state-of-the-art performance
in various sequence learning tasks. Up to date, the application of LSTMs in speech process-
ing and natural language translation appears to be the most favoured research area [SUT14]
[GRA13] [CHO14] [BAH14]. Further applications are chatbots [VIN15], image caption genera-
tion [VIN14], handwriting prediction [GRA13] and human motion prediction [ALA16].

The original Long Short Term Memory Cell was proposed by Hochreiter & Schmidhuber [HOC97].
In their first approach they worked on solving the problem of exploding and vanishing gradients
which occurred by the application of Back-Propagation Through Time gradient update tech-

3 Artificial Neural Networks 24

nique while training standard recurrent neural networks. In this first design Hochreiter et al.
made use of four different elements in order to overcome these error back-flow problems. Fig-
ure 3-8 visualises the LSTM cell in the cell-state centred representation.

• Input node: This node computes the candidate value C̃t (using the notation of [OLA15])
for the states of the memory at time t. The value of this node is computed with the
current input xt and the previous hidden state ht�1 and eventually by using the tanh

activation function. With the weight matrices and the bias we obtain in vector notation the
explicit formulation C̃t = tanh(Wxcxt + Whcht�1 + bc). Note that in the original paper of
Hochreiter & Schmidhuber [HOC97] a sigmoid function was applied, but we use here the
tanh activation according to recent studies [LIP15] [ZAR14].

• Input gate: The gate it was introduced to protect the memory contents from currently
unwanted input. This construction is a gate in the sense that it can control the values of
the input node. This is done by the element-wise multiplication (denoted by ⌦) of it and
C̃t. The control value is thereby computed with it = �(Wxixt +Whiht�1 + bi).

• Internal state: The core of the cell is denoted with Ct. In the original paper the node
is depicted with a linear activation function and is called internal state of the cell. The
self-recurrent edge with fixed weight 1.0 causes the delay of one time step and is also
called constant error carrousel (ECE) [HOC97]. With the input node and the input gate
the update formula for the internal state is given by Ct = C̃t ⌦ it + Ct�1.

• Output gate: Before the new computed internal state Ct is forwarded as an output of the
recurrent cell, it is run through a tanh activation and it is multiplied by the output gate ot
which is computed in the same way as the input gate: ot = �(Wxoxt +Whoht�1 + bo).

Fig. 3-8: First version of the LSTM Memory Cell by Hochreiter & Schmidhuber [HOC97], cell-
state centred representation.

In 2000 Gers and Schmidhuber introduced an improved design adding a forget gate to the orig-
inal LSTM cell [GER00]. They showed in their investigations, that the standard LSTM reached
its limit when dealing with continuous long time series, causing an unbounded linear increase

3 Artificial Neural Networks 25

of the cell state. This has the effect that the output activation function reaches its saturation
which leads to a vanishing gradient and ht becomes equal to the output gate ot. To overcome
the decreasing memory functionality when using long sequences, a new gate ft was integrated
that continuously resets the memory of the cell state. Now the LSTM implementation can be
summarised by the following composite function:

it = �(Wxixt +Whiht�1 + bi) Eq. 3-19

ft = �(Wxfxt +Whfht�1 + bf) Eq. 3-20

C̃t = tanh(Wxcxt +Whcht�1 + bc) Eq. 3-21

Ct = ft ⌦ Ct�1 + it ⌦ C̃t Eq. 3-22

ot = �(Wxoxt +Whoht�1 + bo) Eq. 3-23

ht = ot ⌦ tanh(Ct). Eq. 3-24

Here � (the logistic sigmoid function) and tanh (the tangens hyperbolicus) are applied element-
wise. Figure 3-9 visualises these equations of the LSTM cell, but for convenience the biases bi,
bf , bc and bo are not shown. In this this figure we visualise the LSTM in an explicit fashion with
an additional input and output of Ct, respectively Ct�1, in contrast to the cell centred approach
in figure 3-8.

Neural Network Layer
Element-wise operation
Vector Transfer with fixed weight at 1
Concatenate
Copy

Fig. 3-9: Long Short Term Memory Cell with forget gate, explicit representation similar to Olah
[OLA15].

In the literature many different variations of the original cell structure exist, such as the pop-
ular Peephole variant [GER03a], the Gated Recurrent Unit (GRU) or the Depth Gated LSTM
[YAO15]. Since the former variant is used in the later implementation (cf. Section 5.4) and is
considered in the literature as the state of the art LSTM structure [GRA13], a detailed overview
is now given.

Figures 3-10 and 3-11 depict the LSTM memory cell architecture by Gers and Schmidhuber
[GER03a] which extends the original LSTM with the so called Peephole Connections. Both di-
agrams represent the same cell structure. While figure 3-10 has cell-centred ordered structure,
the second figure explicitly passes the cell state from the previous timestep Ct�1 as an input to
the current cell instance. The additional Peephole Connections have the effect that each gate
layer is allowed to inspect the current cell state. Gers et al. report that this new architecture
improves the accuracy of timing tasks that require the accurate measurement or generation of

3 Artificial Neural Networks 26

timed events. The equations from 3-19 to 3-24 are thus modified as following leading to the
modern LSTM cell network structure,

it = �(Wxixt +Whiht�1 +WciCt�1 + bi) Eq. 3-25

ft = �(Wxfxt +Whfht�1 +WcfCt�1 + bf) Eq. 3-26

C̃t = tanh(Wxcxt +Whcht�1 + bc) Eq. 3-27

Ct = ft ⌦ Ct�1 + it ⌦ C̃t Eq. 3-28

ot = �(Wxoxt +Whoht�1 +WcoCt + bo) Eq. 3-29

ht = ot ⌦ tanh(Ct). Eq. 3-30

Overall, the LSTM has been successfully applied in many research areas. Thank to a multi-
plicatives gates approach, it preserves gradient information over long sequences, banning the
problem of vanishing gradients which enables long ranged memory. After all benefits, LSTMs
can still suffer from exploding gradients especially during an overfitting scenario [GRA13], there-
fore clipping the gradient while training is recommended.

Fig. 3-10: Long Short Term Memory Cell with Peephole connections (red arrows) [GRA13],
cell-state centred representation.

3.3.4 Bidirectional Recurrent Neural Networks

Bidirectional Recurrent Neural Networks (BRNNs) have been first described by Schuster et al.
[SCH97]. They extend a simple RNN by adding a second hidden layer that has also a recurrent
connection but to the future time step. The BRNN cell a time t receives information both from
the past time step t� 1 and the future one t+ 1. The new hidden layer or the backward hidden
layer is denoted by zt and produces together with the standard hidden layer ht the output value
ŷt after passing the output layer (cf. Figure 3-12). The corresponding BRNN is defined by the
following composite function.

3 Artificial Neural Networks 27

Fig. 3-11: Long Short Term Memory Cell with Peephole connections (red lines), explicit rep-
resentation similar to Olah [OLA15]. Legend as in Figure 3-9.

ht = �(Whxxt +Whhht�1 + bh) Eq. 3-31

zt = �(Wzxxt +Wzzzt+1 + bz) Eq. 3-32

ŷt = softmax(Wyhht +Wyzzt + by) Eq. 3-33

Unfolding the cell along time enables BPPT. Because of the nature of this design it is not
possible to use BRNN in online applications, as it is impossible to obtain observations from
future events. In tasks where the current output is not only dependent on the previous data
points of the sequence, but also on future elements, the BRRN seems to be the more suitable
approach. Graves and Schmidhuber [GRA05] combined the ideas of BRNNs and LSTMs ob-
taining BLSTMs. They were used in [GRA09] and outperformed other models in handwriting
recognition.

Fig. 3-12: Bidirectional recurrent neural network unfolded along time step t � 1, t and t + 1.
Figure adapted from Lipton et al. [LIP15].

3.3.5 Stacked Recurrent Neural Networks

A recurrent neural network is naturally deep in time, if we consider more than one time step.
But it is also possible to stack them vertically with depth N , obtaining a “deep” recurrent neural
network. If we denote the previous introduced simple RNN architecture (equations 3-17 and

3 Artificial Neural Networks 28

3-18) by H, then we can summarise the formulation for a deep RNN by

h1t = H(Wih1xt +Wh1h1h1t�1 + b1h) Eq. 3-34

hnt = H(Wihnxt +Whn�1hnhn�1
t

+Whnhnhnt�1 + bnh) Eq. 3-35

for all n = 2, . . . , N and for t = 1, . . . , T . Figure 3-13 visualises that each LSTM cell transfers
its hidden state hnt as usual to the next instance in time direction hn

t+1, but also to the next cell
in vertical direction hn+1

t
and in addition to that this hidden state is passed to the output layer in

order to determine the prediction ŷt:

ŷt = �

NX

n=1

Whnyh
n

t + by

!
. Eq. 3-36

Different formulation for the output layer are also possible like in [HER13] where only the last
hidden state is considered:

ŷt = �
�
WhNyh

N

t + by
�
. Eq. 3-37

In newer literature, for instance in Kalchbrenner et al. [KAL15], LSTMs where also stacked in
height. The so called Grid LSTM consists of LSTM cells arranged in a multi-dimensional grid.
As we can see, there exist uncountable possible architecture and different ways of arranging a
variety of different recurrent cells opening a large field of further research.

3.4 Prediction Network Architectures

The preliminary sections introduced the fundamental building blocks for a prediction network
architecture. There exists various architectures that arrange RNN cells in different shape and
with differing information flows that are designed for their corresponding task. Figure 3-14
visualises different applications of sequence learning tasks which are common in literature. The
subfigure on the top left represents a sequence generation task with a given single datapoint.
This could be for example a image caption generation task like in [VIN14]. In the opposite
case on the top right, a sequence is classified by one output vector. An example application
for that would be classification of movie reviews into different moods [TIM14]. A sequence-
to-sequence mapping which has been used for machine translation [CHO14] is depicted on
the bottom left. Predictions for every new time step in real time applications are realise by an
architecture visualised on the bottom right.

This section focuses on the sequence-to-sequence approach since the topic of this thesis is
to predict sequential spatial data based on the history movement of an observed object. In
the following sections, four different architectures are introduced that are implemented in the
seq2seq library [RAH16b], which is later used in chapter 5 for the trajectory prediction task.
All designs have in common that they have an encoder-decoder structure and were originally
designed for natural language processing tasks. To the best of the authors’ knowledge, the first
encoder-decoder architecture for sequence-to-sequence mapping was developed by Sutskever
et al. [SUT14]. The main idea of this architecture is to encode the input sequence to an
internal representation or so-called context vector with fixed length. This context vector can
be regarded as a summary of the input and it is fed into the decoder in order to generate the

3 Artificial Neural Networks 29

Fig. 3-13: Stacked recurrent neural network unfolded along time step t � 1, t and t + 1 with
depth N = 3. All hidden states are passed to the output layer (cf. equation 3-36).
Note that different non-linear activation functions than the sigmoid function can be
used in the output layer. Figure similar to Graves [GRA13]

sequential output. The following architectures differentiate themselves from another in the way
how the information flow between context vector and the decoder is constructed.
We introduce now an abbreviation for a Long-Short-Term Memory cell,

LSTM(X) = (Ct�1, ht�1, xt) 8t Eq. 3-38

where X is the observation sequence with length Nobs 2 N+

X = (x1, x2, . . . xNobs). Eq. 3-39

Further the predicted output sequence has now the length Npred 2 N+,

Ŷ = (ŷ1, ŷ2, . . . , ŷNpred). Eq. 3-40

The the internal representation of the input sequence or the context vector is denoted by V with
fixed dimensionality.

3 Artificial Neural Networks 30

Fig. 3-14: Sequence mapping scheme based on figure from Karpathy [KAR15] with input rep-
resented as red rectangles, recurrent cells in green and output in blue. The top
left subplot shows a sequence generating scenario. On the top right a sequence
classification task is visualised. Sequence to sequence mapping is shown in the
bottom left and “realtime” prediction on the bottom right.

3.4.1 Sequence to Sequence Model

This model was described by Sutskever et al. [SUT14] and represents the first encoder-decoder
LSTM architecture with an additional context vector. It was originally designed for a English to
French translation task and it achieved compelling results with the BLEU benchmark method
[PAP02]. Furthermore, the researchers found that the net performs especially well on long
sentences and reversing the order of the input sequence has a positiv effect on nets accuracy.
In order to deal with all possible different lengths of the input and output sequences, they used
a <EOS> (end-of-sentence) token.

The mechanism of this model can be explained by the following. Usually, the encoder and the
decoder are trained to maximise the conditional distribution p(y1, . . . , yNpred |x1, . . . , xNpred) over
the input and output sequences where Npred may be different from Nobs. The net computes this
probability by reading the input X element by element in the encoder. After reaching the <EOS>

token, the fixed dimensional representation V is given by the last hidden state of the LSTM
(hNobs and CNobs). The decoder consists of another LSTM with an initial state which is set to
the summary V and it is conditioned to generate the output sequence Ŷ based on the previous
prediction ŷt�1 and the previous hidden states, respectively V . A pseudo formulation of this
architecture is given for the encoder by

X = (x1, ..., xNobs)

V = LSTM(X)
Eq. 3-41

and for the decoder by,

ŷ1 = LSTM(C0, h0, V)

ŷt = LSTM(Ct�1, ht�1, ŷt�1) 8 t = 2, . . . , Npred.
Eq. 3-42

In addition to that figure 3-15 visualises this scheme explicitly. The network is trained as usual.

3 Artificial Neural Networks 31

The true output yt is fed to the decoder and the error propagated through the whole architecture
in order to fit the the input.

Fig. 3-15: Sequence to sequence architecture by [SUT14] with Nobs = Npred = 3. In green
the encoding LSTM and in blue the decoder. The prediction of the decoder ŷt at
each time step t becomes the input for the decoder at the next time step. Figure
adapted from Lipton et al. [LIP15].

3.4.2 Simple Sequence to Sequence Model

This framework is a simplification of the previous one and is implemented in [RAH16b]. This
time ŷt�1 is not passed to the decoder and hence the formulation of the decoder is given by,

ŷ1 = LSTM(C0, h0, V)

ŷt = LSTM(Ct�1, ht�1, V) 8 t = 1, . . . , Npred.
Eq. 3-43

3.4.3 Sequence to Sequence Model with Peek

The model by [CHO14] extends the architecture in section 3.4.1. Now the encoder is modelled
in such a way that at each output time step the LSTM has a peek at the summary V . For the
decoder a slight modified LSTM architecture is used,

ŷ1 = LSTM(C0, h0, V, V)

ŷt = LSTM(Ct�1, ht�1, yt�1, V) 8 t = 2, . . . , Npred.
Eq. 3-44

3.4.4 Attention Sequence to Sequence Model

Bahndanau et al. [BAH14] developed this framework for further performance improvement of
encoder-decoder architectures. This model deploys a BLSTM as encoder and an additional
FNN between encoder and decoder. It is reported that it generates better alignment between
input and output data for language translation tasks. The formulation of the decoder can be
summarised by

X = (x1, ..., xNobs)

Si = BLSTM(X)
Eq. 3-45

where Si is a sequence of hidden states of all inputs, hence it has a lengths of Nobs. The context
vector is then a weighted sum,

vi =
NobsX

j=1

aijSj Eq. 3-46

3 Artificial Neural Networks 32

where the weight matrix aij for each hj is computed with the energy matrix eij ,

eij = a(Ci�1, hi�1, Sj)

aij = softmax(eij).
Eq. 3-47

Hereby, represents a a FNN which weights are trained simultaneously with the other weights
of the architecture. Then with the help of the context vector the hidden states of the encoder
are computed they are put through an output layer with a non-linear activations function to
determine the prediction ŷt. This implementation is realised by a single Attention Decoder cell
(further details in [RAH16b]). Note that there is no direct transfer of the hidden state from the
encoder to the decoder.

4 Research Objective and Approach 33

4 Research Objective and Approach

In this chapter, the general research objective and approach of this thesis is presented. First
of all, the introduced existing prediction models (cf. section 2) are analysed. On this basis, the
demand for further research is figured out, so that two research questions can be formulated
in section 4.2. In the next section 4.3, the approach to answer these research questions is
explained. Subsequently, it is necessary to define performance criteria of a prediction model in
order to compare different models or model configurations with each other. These definitions
will be explained in section 4.4.

4.1 Analysis of Existing Prediction Models

A variety of different classes of pedestrian prediction models are discussed in section 2. The
Social Forces (SF) models are one of oldest approaches to model pedestrian dynamics. Most
of these SF models are based on handcrafted functions that simulate ”energy“ potentials be-
tween individuals, environmental constraints and the individuals intended ground truth destina-
tion [HEL90] [YAM11]. Evidently, the intended destination for one pedestrian in a intersection
scenario is not known a-priori. Hence, these models are suitable to simulate the movement of
a pedestrian, but the deployment of a SF model for the prediction of single pedestrians seems
not to be appropriate.

In almost all presented statistical prediction models, the observed scene was discretised in
finite elements. During the training of such models constraints, movement directions, posi-
tions and velocities of different classes of road users were associated with these elements (cf.
[BAL16] [BRO16]). In order to predict the most probable future trajectory of one individual, the
probabilities over the grid are evaluated. Therefore, the prediction quality would suffer if the
chosen element size is too large. Although the model path prediction is not on the continu-
ous domain, some approaches showed promising results [BAL16]. Nevertheless, regarding a
safety-related system it is questionable, whether statistical models are able to correctly predict
individual outliers and abnormal behaviour.

Pedestrian trajectory prediction with RNN was already investigated by Alahi et al. [ALA16].
In order to model social behaviour between individuals, they connected spatial approximate
LSTMs. Despite their efforts, the described approach suffers from some drawbacks. First,
the research did not investigate the potential of recurrent sequence to sequence models for
this task. Further, their model quality evaluation was performed on small and simple datasets.
For example the ETH and Hotel datasets have only two prevailing movement directions (cf.
section 11.4.1). In the first case, the majority of the tracked pedestrians heads simply towards
and away from a building’s entry. And in the second case, the pedestrians walk straight bi-
directional along the pavement. In contrast to that, a usual intersection scenario is often much
more complex. Pedestrians wait at signal lights (or not), they do spontaneous street crossing
manoeuvres and they move with different velocities in much more directions. These different
movement patterns where not covered in the proposed datasets. In addition to that, the used
datasets in [ALA16] are not very dense. The biggest collection of trajectories is the ETH dataset

4 Research Objective and Approach 34

with approx. 9000 data points and 359 single trajectories whereas the other datasets are
remarkably smaller1. So far, it is unclear if these small number of trajectories for a single scene
are sufficient to give valid statistical statements of the model quality and further there is a need
to investigate the impact of large sized datasets on recurrent neural net’s performance.

Other analysed approaches make serious simplifications on the movement of the pedestrian.
In [KEL14] and in [HAS15] the model’s response is either ”the pedestrian will cross the road“ or
”the pedestrian stops walking at the kerb“. The precise position estimation for future time steps
is not included and moreover, these models were developed for vehicle’s camera systems and
are therefore not directly deployable for infrastructure-base sensors.

A literature search revealed that until today no continuous self-improving pedestrian prediction
model was used or proposed. More general approaches for continuously learning ANNs were
found for CNNs (e.g. [XIA14]), but not for RNNs.

4.2 Research Questions

The analysis of the relevant existing literature for prediction models shows that it is desirable
to investigate the potentials of recurrent neural networks for pedestrian movement prediction in
urban spaces. Sequence to sequence designs combined with LSTM cells performed remark-
ably well in various research problems, in which complex time dependant sequential data was
trained and generated. For example, natural language processing tasks or handwriting recog-
nition were successfully modelled with this special machine learning approach. This leads to
the question, how these potentially powerful neural nets can be applied to our setting? In the
literature, there are no indications which special architecture design could perform well on this
problem. Hence, the presented encoder-decoder designs in section 3.4 have to be investi-
gated.

In general, neural nets have a lot of fine tuning parameters such as the choice of the optimiser,
number of hidden dimensions and training epochs. The net’s prediction quality steadily de-
pends on the correct estimation of these hyper parameters, but exploring the parameter space
for an optimal fit is a very time consuming task especially with large-scaled datasets. As a re-
sult, there is a need to systematically discover the parameter space for sequence to sequence
learning with respect to relevant datasets.

Further, every deep learning approach makes use of intense data preprocessing in such a way
that the neural net is able to successfully process and store the given training data. In the liter-
ature, many different methods for various kinds of problems and for different net architectures
are proposed [VIN14] [GRA05]. To the best of the authors knowledge, a preprocessing method
for trajectory datasets has not been investigated so far. In the context of the given setting, it is
a crucial task to work out a preprocessing method for a spatial sequential dataset that consists
of many single trajectories captured at one scene.

1 e.g. ZARA 1: 1500 data points and 148 trajectories

4 Research Objective and Approach 35

As the performance of a neural net is an interplay between data preprocessing, data quality,
network architecture and hyperparameters, it is not sufficient to optimise only one of these
domains. Thus, it is necessary to develop a holistic approach within the framework of this
thesis. Furthermore, another goal of this work is to analyse the impact of large sized training
datasets captured at intersection scenarios.

Another aim of this thesis was to develop a continuously learning forecasting model. The
steady data stream from an urban intersection observed with sensor infrastructure can be used
to continuously improve a recurrent neural net over time. Since related literature has not yet
treated this issue, there exists the need to develop and examine basic approaches.

Based on the obtained results of the model configuration exploration, it is necessary to com-
pare and evaluate the prediction quality. Therefore, another goal in this thesis is to analyse,
whether the forecasting reliability and stability is comparable to baseline models and whether
the model’s predictions are acceptable for a safety-critical application at urban intersections.

The goals and topics of this bachelor thesis can be summarised in two research questions:

1. What is the optimal recurrent neural net design for an optimal pedestrian trajectory
prediction quality ?

2. How to design the neural net’s training process with a continuous data stream
captured at intersection scenarios ?

4.3 Approach

The approach to answer the respective research questions is the following: At first, the im-
plementation of the presented prediction network architectures in section 3.4 with the help
of third-party deep learning libraries such as Keras [CHO15] and the Keras add-on Seq2Seq
[RAH16b] should be performed. Based on this implementation, basic validation tests with self-
generated and public available datasets should be carried out to prove fundamental viability of
the neural network. Then, an iterative process should be carried out, in order to optimise the
interaction of different methods of data preprocessing and network configuration. This process
is controlled by visualising and evaluating different performance criteria (see also section 4.4)
of the model’s output.

With this results, a well-performing preprocessing and model configuration should be validated
and compared with results by Alahi et al. [ALA16]. To realise this, the network should be trained
with the datasets ETH and Hotel (cf. section 11.4.1) and identical implemented performance
criteria should lead to a comparability of both approaches.

In the next step, more complex datasets from urban intersection scenarios have to be inves-
tigated. But so far, there exist only a few datasets captured at intersection that are publicly

4 Research Objective and Approach 36

available. Because of that, measurements with a laser scanner should be carried out to gener-
ate more suitable datasets. In addition to that, datasets generated by the traffic and pedestrian
simulation software Vissim [PTV17] should be used. Further, hyper-parameter fine tuning has
to be applied on these new datasets to determine the best performing model configuration for
each of them. Moreover, the performance of the RNN on these datasets has to be compared
with basic baseline models such as a Kalman filter and a feedforward neural net.

For the continuously learning mechanism, a single intersection, but with two different pedestrian
movements scenarios is considered. Consequently, the first dataset represents the intersection
under normal conditions while the second dataset contains an obstacle, for example a construc-
tion area or a blocked road, in the pathways of the pedestrians. With this setting, a temporal
change of an intersection is simulated. Starting from the premise that the neural net is fitted on
the first dataset, motion characteristics from the second dataset should be additionally trained
into the existing model. Thereby, it is crucial to perform this continuous learning with minimal
additional training effort. The approach is to retrain the neural net with a new merged dataset
consisting of trajectories of the first and the second dataset. This should ensure, that already
invested computational effort into the model is preserved, whereas new unknown data samples
taken from the new scenario are added to the model. One possibility to construct the new
training dataset would be to merge the first dataset with badly predicted trajectories of the sec-
ond one. A further approach would be to retrain only the last captured pedestrian trajectories.
Hence, it is necessary to analyse the effects of different dataset merging methods.

4.4 Definition of Performance Evaluation

In order to determine the prediction quality of a model or a special model configuration, it is
essential to define performance criteria. In this thesis we will distinguish between primary
and secondary performance evaluation criteria. Primary criteria are defined as quantities that
directly measure the accuracy of a predicted trajectory in relation to the true future path of an
individual. To persevere consistency with relevant literature, some of the metrics used by Alahi
et al. [ALA16] will be also used in this work:

• Mean Squared Displacement denoted by LMSD

Average of the squared distances between all estimated coordinates and the true coordi-
nates of all test trajectories

• Mean Final Displacement denoted by LMFD

Average of the distance between predicted final position and the true final position of all
test trajectories

• Mean Displacement denoted by LMD

Average of the distances between all estimated coordinates and the true coordinates of
all test trajectories

4 Research Objective and Approach 37

Implementation details of these metrics can be found in the attachment 11.3.

Road safety systems must have a reaction latency of several milliseconds in order to prevent
possible collisions. A pedestrian prediction model would be useless if it would take several
seconds to compute an estimate future position. Additionally, to keep long-term efficiency of
a safety system, the training duration of the deployed ANN should not be too expensive, es-
pecially when a continuously learning approach is deployed. Thus, by secondary performance
evaluation criteria we refer to properties of a model that describe the prediction speed and the
training duration. To proof the practicability of such a prediction model, these quantities are
measured and interpreted, but an in depth analysis is not focus of this thesis.

5 Model Design and Implementation 38

5 Model Design and Implementation

This chapter gives a detailed description of the implementation of the approach of this thesis. In
the first section 5.1, a general overview about utilised deep learning libraries and the developed
code structure will be presented. Section 5.2 specifies the datasets on which the deep learning
approach will be applied. Consequently, section 5.3 displays a pre-processing pipeline that
was applied on every dataset to ensure processability with sequence to sequence models. An
in-depth description of the model design and the deployed LSTM cell is given in 5.4 and in
5.5 respectively. Details about the training procedure and the evaluation of the model quality
can be found in section 5.6. Further, section 5.7 deals with the optimisation of the model’s
hyper-parameters. Several basic sampling methods used to investigate the impact of model
parameters are elucidated in section 5.8. In order to measure the robustness of a trajectory
prediction model, a stability analysis method is proposed in section 5.9. Finally, section 5.10
presents several approaches that are intended to analyse a continuous learning mechanism for
a steady data stream.

5.1 General Code Setup

In the early stages of this work technical requirements had to be assessed. For deep learning
there exists several popular libraries such as Theano [THE16], Tensorflow [ABA15] and Caffe.
All of them are able to compile efficient code which can be executed and accelerated by GPU
devices. On basis of the accessible hardware at the RWTH Compute Cluster and available
libraries, the choice fell on Theano as back-end library that is accessed by the high-level library
Keras [CHO15]. On top of that, the add-on seq2seq [RAH16b] is used for the sequence to
sequence models presented in section 3.4. This setup allows in combination with the program-
ming language Python 2.7 a very flexible and fast code development. An implementation of the
presented approach in 4.3 with the very popular Tensorflow library was not suitable, as it needs
special hard- and software requirements which were not fulfilled.

The flexibility of the implementation is introduced by a modular programming design. That
means, different kinds of subroutines for pre-processing, model generation, training process,
results evaluation and visualisation are organised in modules. These modules do not have data
encapsulation nor an object orientated design, as the developed framework has a conceptual
focus. Since the training of a neural net can take from a few hours up to a several days de-
pending on dataset size and training configuration, it is necessary to use the GPU batch mode
system of the RWTH Compute Cluster. Therefore, the code and data structure are designed
for a job execution system.

When submitting a job, or a so called “run”, to the Compute Cluster or to the IKA Machine, all
important functionalities of the developed framework can be controlled by a single configuration
file. This configuration file (cf. attachment 11.1) consists of several control options, that define
the model, the used dataset, preprocessing settings and further options. A configuration file is
committed to the framework via command-line parameter. Figure 5-1 depicts roughly the code
structure of the project folder. Directory TrajectoryPrediction contains all python source code

5 Model Design and Implementation 39

/

TrajectoryPrediction

.

.

.

configs

config1.ini

config2.ini

.

.

.

data

eth

laserscanner

vissim

.

.

.

output

output_config1

output_config2

jobs

job_config1.sh

job_config2.sh

Fig. 5-1: Code and data structure

files that are needed to perform the deep learning task (further details in the next sections),
whereas the folders configs, data, output and jobs contain the configurations files, the raw
datasets, the results and the batch job configurations. Every run has its own output folder
in which the weights of the trained neural net, the results, the visualisation files and logged
information are saved. This has the advantage, that is always possible to reproduce the results
by reusing the weights of the prediction model.

5.2 Datasets

In this thesis, nine datasets from four different sources are used which were captured with
diverse measurement methods. A visualisation and statistics for each of the datasets can be
found in Attachment 11.4. Due to a lack of real intersection measurements with pedestrians,
trajectories from vehicle positions are also applied, although car movements are not focus of
this thesis. Nevertheless, performing the trajectory prediction task with vehicle data should
basically be the same as dealing with pedestrian trajectories. Hence, the following dataset
sources are studied in order to show proof of concept.

• ETH: Camera-based pedestrian tracking at crowded spaces in Zürich. The trajectories
were manually annotated and the whole dataset was published by [PEL09].

• Laser: Intersection scenarios in Aachen captured by a stationary 4-phase laser scanner.
The majority of the tracked objects are vehicles.

• Vissim: Pedestrian trajectories that are generated by the software Vissim [PTV17] that is

5 Model Design and Implementation 40

equipped with a social forces model.

• ATC Dataset: Trajectories from pedestrians that were tracked with a high-precision GPS
receiver at the Aldenhoven Testing Center.

5.3 Data Pre-processing

Almost every deep learning approach makes use of intense data pre-processing in order to
make the data usable for neural networks. This also applies to our setting. We start from the
premise that a given dataset consists of a set of uncorrelated single trajectories with different
length, but with small measurement errors. Thereby, each trajectory consists of several data
points sampled with a fixed sampling frequency fs measured in [Hz]. One data point denotes
the position of the pedestrian in a planar cartesian coordinate system at time t. Thus, the
trajectory Yi can be written as a two-dimensional matrix where the first column denotes the
x-coordinates and the second column consists of the y-coordinates measured in [m]:

Yi =

0

BBBBBBB@

x1
i

y1
i

x2
i

y2
i

...
...

xNi�1
i

yNi�1
i

xNi
i

yNi
i

1

CCCCCCCA

2 RNi⇥2. Eq. 5-1

where i = 1, . . . ,K with K the total amount of trajectories in the dataset and Ni the total number
of sample points of trajectory Yi. This notation is important and also appropriate, since a single
trajectory is also implemented in the source code as a NumPy ndarray [JON15] with the above
denoted shape.

In the following the basic preprocessing steps are presented, that are applied to every trajectory
of a dataset in order to obtain a new dataset that is suitable for supervised training.

1. Downsampling
The selected datasets are captured with different sample rates, e.g. the laser datasets
with 25 [Hz] or the Vissim datasets with 10 [Hz]. In order to maintain comparability
between them and to reduce the size, all trajectories in the relevant datasets are down-
sampled to 2.5 [Hz], as described in [ALA16]. Due to the reason that all datasets have
a sample rate that can be divided by 2.5 [Hz] without remainder, the downsampling is
performed by a decimation factor without interpolation.

2. Smoothing
Usually the live capture measurement, especially those measured through a laser scan-
ner, are very noisy. Hence, a one-dimensional Gaussian filter from the SciPy package
[JON15] is applied to each column of Yi in order to smooth the trajectories. Thereby,
the parameter ⌃, which denotes standard deviation of the Gaussian kernel, controls the
intensity of smoothness applied to each trajectory. This smoothing factor can be modified
in the configuration file, but in the following we take ⌃ = 1 as a standard parameter.

5 Model Design and Implementation 41

Listing 5.1: Configuration file snippet - Smoothing factor

1 [preprocessing]
2 smoothing_sigma = 1

3. Normalisation
Data normalisation is an essential step of the pre-processing for machine learning. Hereby,
all data points of the dataset are linearly scaled from the original domain to the new region
[�1, 1]2. This ensures that the activation functions in the neural net are fully addressed
and thus a faster convergence of the training procedure is archived.

4. Sliding Window
Sliding Window is a technique that subsamples a single trajectory with two constant sized
moving intervals into several subparts. The first interval is intended to generate the ob-
servation of the pedestrian’s movement. The observation sequence is also known as the
history of the pedestrian. Like in [ALA16], the observation length is Tobs = 3.2 [s] which
corresponds to Nobs = 8 data points sampled with 2.5 [Hz]. The observation window is
then incrementally moved, simultaneously with the prediction window, over the next co-
ordinate pairs until the prediction window reaches the last point of the trajectory. Hereby,
the prediction window has a length of Npred = 12 sample points that corresponds to an
observation time of Tpred = 4.8 s. This pre-processing step noticeably introduces redun-
dancy in the training data, but according to literature “redundancy acts like regulariser and
reduces overfitting” [JAI15] during training.

Fig. 5-2: Sliding Window applied to trajectory Yi. In red the window, the observations are
taken into account while the prediction trajectories are captured by the yellow
window. That applies for 1 i0 Ni � (Nobs +Npred) + 1.

Hence, from one single trajectory Yi with length Ni � Nobs + Npred, we obtain several
observation and prediction trajectories that are denoted in the following by Oi0 and Pi0 .
The number of gained observation-prediction pairs is S = Ni � (Nobs +Npred) + 1 where
each pair has the index i0 = 1, . . . , S.

Oi0 =

0

BBBBBBB@

x1
i0 y1

i0

x2
i0 y2

i0

...
...

xNobs�1
i0 yNobs�1

i0

xNobs
i0 yNobs

i0

1

CCCCCCCA

2 RNobs⇥2 Pi0 =

0

BBBBBBB@

x1
i0 y1

i0

x2
i0 y2

i0

...
...

x
Npred�1
i0 y

Npred�1
i0

x
Npred

i0 y
Npred

i0

1

CCCCCCCA

2 RNpred⇥2

Eq. 5-2

5 Model Design and Implementation 42

Further, a collection of observation or prediction trajectories can be written as a three-
dimensional tensor. This notation corresponds also to the actual implementation of the
training dataset.

O 2 RS⇥Nobs⇥2 P 2 RS⇥Npred⇥2 Eq. 5-3

This Sliding Window method can be applied with arbitrary lengths that are defined in the
configuration file, but in the standard case Nobs = 8 and Npred = 12 like in [ALA16] are
used.

Listing 5.2: Configuration file snippet - Sliding Window configuration

1 [preprocessing]
2 observationlength = 8
3 predictionlength = 12

Note that a trajectory Yi is removed from the training dataset if Ni < Nobs + Npred. That
means, the sequence is too small to be processed by the sliding window.

To summarise the preprocessing, the ETH dataset is taken as an example. The original tra-
jectory collection consists of 359 trajectories with different length that have together 8888 data
points. The preprocessing method returns the observation tensor O 2 R2613⇥8⇥2 and the corre-
sponding prediction collection P 2 R2613⇥12⇥2, which consists of slightly smoothed trajectories
that are rescaled to [�1, 1]2. Both datasets have now together 52260 data points.

5.4 Model Details

The structure of the described encoder-decoder models in section 3.4 consists of two parts.
In the first component, the input sequence is mapped to a fixed-sized internal vector using
the encoding LSTM. In turn this representation is used to generate the target sequence with
another LSTM. In the studied case, the input sequence is the preprocessed observation trajec-
tory Oi, whereas the target sequence is defined as the corresponding prediction sequence Pi.
During training, these two components of the sequence to sequence models are jointly trained
in order to minimise a loss function L(P̂ , P) for all the trajectories. Hence, the arising general
optimisation problem can be written as

pw(P |O) = argmin
pw(P,O)

{L(P̂ , P)} Eq. 5-4

where P̂ = f(O;w) is the model’s prediction and w are the weights of the RNN. Hereby, the
training dataset that consists of S sample pairs is used

{(Oi, Pi) : i = 1, . . . , S}. Eq. 5-5

On this basis, the default prediction model of this thesis is defined by the following functional
components:

• Loss function: Mean squared displacement LMSD (cf. section 11.3)

5 Model Design and Implementation 43

• Architecture: Sequence to sequence model by [SUT14] described in section 3.4.1

• Optimiser: Adam optimiser [KIN14] with a learning rate of ⌘ = 0.001

The reason for these specific choices are early experiences and comparisons, but a detailed
investigation can be found in section 6. The actual implementation allows to exchange every of
this components via the configuration file.

Listing 5.3: Configuration file snippet - Model default configuration

1 [model]
2 architecture = seq2seq
3 loss = mean_squared_displacement
4 optimizer = adam

5.5 LSTM Configuration Details

As we know from section 3.3.3, the designation “LSTM” does not define a specific RNN ar-
chitecture, but there exist different variants of LSTM cells with different configurations. In the
following the deployed LSTM cell will be described.

The actual implementation of the used LSTM is done in the Python module Recurrent Shop
[RAH16a] which is accessed by the seq2seq package [RAH16b]. The implemented LSTM cell
is the peephole LSTM variant [GER03a] (cf. equations 3-19 to 3-24), but with a hard sigmoid
activation function instead of the usual sigmoid activation function (cf. attachment 11.2). The
hard sigmoid activation function is a piecewise linear approximation of its counterpart, with
the effect that it does not use the computational expensive exponential function. This leads
to a shorter training duration. Identical to the original definition of the peephole LSTM, the
activation function for the transferred hidden state is the tanh function (cf. equation 3-27). At
the initialisation of the LSTM cell, the weights of the gates are assigned randomly with the glorot
uniform distribution whereas the weight matrix of the input node is determined by an orthogonal
initialisation method so that the eigenvalues are equal to one [RAH16a].

5.6 Training & Evaluation

As we perform supervised learning with the presented approach, it is crucial to train and to
evaluate the model on different datasets. Therefore, the pre-processed dataset is split with a
factor of ↵ = 0.7 into two parts. The first and bigger dataset is referred to as the train split,
whereas the smaller dataset is called test split.

Train split: {(Oi, Pi) : 1 i bS ⇤ ↵c} Eq. 5-6

Test split: {(Oi, Pi) : dS ⇤ ↵e i S} Eq. 5-7

As already explained, the execution of one training epoch implies that all trajectories of the
train split are put once through the neural network to the determine the error signal and hereby
modify the model weights. But before an epoch is executed, all samples in the test split are
randomly shuffled, in order to archive a possible faster convergence of the training [BEN12].

5 Model Design and Implementation 44

Moreover, in order to prevent the model from overfitting, an early stopping mechanism is used
during training. Therefore, an additional split is introduced that consists of 10% of the train split.
This validation split is continuously evaluated after each epoch and if the prediction quality
of this part stops increasing for a predefined number of epochs, the training will be stopped
[CHO15].

Likewise in [GRA13], an additional regularisation method is applied during the training proce-
dure that rescales the gradient if it exceeds a certain value. A default gradient clip value of 1 is
used, so that all weight gradients are clipped in the range [�1, 1] [CHO15].

When the training of the RNN has finished due to early stopping or when the maximal number
of epochs has been reached, the observation trajectories of the test split are taken as an input
to the final model f(·, w). Consequently, the output of the RNN are the corresponding trajectory
predictions P̂i:

P̂i = f(Oi, w) 8i = dS ⇤ ↵e, . . . , S Eq. 5-8

Subsequently, the predictions are measured against the true trajectories P by computing the
introduced performance evaluation criteria L(P̂ , P). Additionally, several visualisation methods
are called that generate a variety of graphical representations of the results.

5.7 Hyperparameter & Hyperparameter Tuning

Typically, ANNs depend on many configuration settings that have to be determined in order
to use the net’s full potential. Thus, discovering this parameter space is an important step
before making further investigations. When the default model (cf. section 5.4) is considered,
the following parameters are now denoted as the hyperparameters of the prediction model.

• Number of Hidden Dimensions h 2 {32, 64, 128, 256, 512, 1024}

• Learning Rate ⌘ 2 {0.0005, 0.001, 0.002, 0.003}

• Number of Training Epochs e 2 (1, 1000)

• Training Batch-Size b 2 {16, 32, 64}

• Depth of Encoder and Decoder d 2 {1, 2, 3}

• Dropout Probability p 2 [0, 1)

In addition to that, reasonable limitations for each parameter are defined which leads to a six-
dimensional parameter space. These special choices are based on basic considerations and
experiences taken from relevant literature. To automate the exploration of a hyperparameter
space several strategies can be applied.

5 Model Design and Implementation 45

In early experiments, the cross-validation method GridSearchCV [PED11] was deployed. This
algorithm, partitions the datasets into several test and train splits. Then, the model is repeatedly
trained and tested while test and train splits are frequently rotated. Thereby, the hyperparam-
eters are evaluated on the full grid of the parameter space. However, this method caused an
impracticable overall runtime, so that a search algorithm was used instead.

Hence, the Hyperopt library [BER13b] was applied on this setting. The package is equipped
with the TPE search algorithm that showed good performance for different types of ANNs
[BER13a]. The optimisation is performed by minimising the loss LMSD of the test split while
the net is trained with the fixed and randomised train split.

5.8 Parameter Analysis

A hyperparameter optimisation is a great tool for an initial exploration of the parameter space,
but this kind of search does not reveal any in-depth parameter dependencies or sensitivities.
To gain a better understanding of certain model parameters or to visualise special cross-
correlations among them, it is necessary to sample some particular parameter subspaces.
Therefore, three basic types of parameter analyses are presented.

• 1D parameter analysis
Simple sampling of a single parameter.

Listing 5.4: Example configuration - 1D parameter analysis

1 [parameter_analysis_1D]
2 hidden_dim = 32, 64, 128, 256, 512

• 2D parameter analysis
Sampling on a two dimensional mesh, so that all combinations are covered.

Listing 5.5: Example configuration - 2D parameter analysis

1 [parameter_analysis_2D]
2 hidden_dim = 64, 128, 256
3 observationLength = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

• 2D epoch analysis
Basically a 1D parameter analysis, but the model is evaluated after every prescribed
epoch count until the last epoch is reached.

Listing 5.6: Example configuration - 2D Epoch Analysis

1 [epoch_analysis_2D]
2 nb_epoch = 50, 100, 150, 200, 250, 300, 350, 400, 450
3 depth = 1, 2, 3

During the sampling, all other options stay fixed and unless otherwise stated the early stopping

5 Model Design and Implementation 46

method is deactivated. On each sample point of these analyses, the performance evaluation
criteria are applied and the results are eventually plotted.

5.9 Stability Analysis

In section 4.3 it was stated that a prediction model must be able to cope with uncertainties in
the measurements without evoking instabilities in the prediction. Thus, in order to investigate
the stability of a RNN prediction model, a basic uncertainty analysis method is explained.

If a trained model f(·, w) and a test observation trajectory Oi is considered, it is the task to
determine the prediction stability of this single observation. Hence, artificial measurement un-
certainties are introduced by adding noise to the input. To archive this, each single element of
the trajectory Oi is added by a random number, drawn from a Gaussian distribution with zero
mean µ = 0 and with a fixed standard deviation of ⌃ = 0.1 [m]. The resulting matrix is thus the
perturbed trajectory O⇠

i
. This procedure is repeatedly done for v = 2048 times with the effect

that a new noisy dataset is generated. It is denoted by O⇠
2 RV⇥Nobs⇥2. Consequently, the per-

turbed trajectories are pre-processed and finally used to perform the prediction task obtaining
a set of model predictions

P̂⇠ = f (O⇠, w) . Eq. 5-9

The result is in turn a stochastic distribution that is visualised by a heat map. By this means, the
stability of the model can be manually evaluated and interpreted (cf. section 6.6). The whole
process is not only performed with a single observation, but with a selected subset of all test
observations.

5.10 Continuous Learning

A steady data stream captured at an intersection scenario enables the possibility for a continu-
ous self-improving predictive model. Nevertheless, a review of the relevant literature indicated
that this approach has not yet been investigated. Hence, to analyse basic continuous learning
approaches, the following simplified situation is considered.

We start from the premise that an urban intersection scenario undergoes an abrupt change
of its traffic flow. This could be caused by a start of construction works or a blocked road
that forces the pedestrian to change their movement patterns. This event is denoted in the
following by A. Prior to A, potential infrastructure sensors have gathered trajectories that are
pre-processed and merged into dataset I

{(OI
i , P

I
i) : 1 i SI

}. Eq. 5-10

This dataset is subsequently used to train the proposed architecture obtaining the prediction
model f I(·, w). If we work on the premise that the model f I(·, w) is deployed for a prediction
task, the occurrence of event A could cause bad predictions at specific areas, ergo the areas
that are afflicted by A.

These erroneous predictions can be determined by computing the prediction error Ei for each

5 Model Design and Implementation 47

Fig. 5-3: Dataset splitting for continuous-learning experiments. In green, the dataset captured
previously to event A. The second dataset that contains a different movement pat-
tern induced by A is coloured red. Hereby, the second dataset is divided into split II
and split III.

observation trajectory OII
i

. That means, observations captured after event A (cf. Figure 5-3)
are used to predict their counterparts and the resulting model predictions P̂ II are measured
against the ground truth P II . Using our notation we can summarise,

EII
i = LMSD(P̂

II
i , P II

i) 8 i = 1, . . . , SII Eq. 5-11

with the predicted trajectories P̂ II = f
�
OII;w

�
and the true trajectories P II . Note, that all

trajectories are rescaled to the original domain during the computation of the error values

On this basis, it is the aim to analyse different approaches that retrain the existing model f I(·, w)

with a new dataset consisting of trajectories of split I and of split II. Retraining the model has the
effect that computational effort that was already invested into the model is partially preserved.
Furthermore, a specific merging method prevents the new dataset from getting too large. In the
following, four different methods are proposed.

• Worst trajectories
The worst performing observation-prediction pairs of split II based on EII

i
are merged

together with split I. Then this new dataset is used to retrain f I(·, w). Thus, already good
performing trajectories of split II are not unnecessarily added to the new training set.
Hereby model f II

W
(·, w) is obtained.

• Random trajectories
Randomly chosen observation-prediction pairs of split II are merged together with split I.
Then this new dataset is used to retrain f I(·, w). Hereby model f II

R
(·, w) is obtained.

• Sliding Window
Retraining of f I(·, w) is done with the last SI captured observation-prediction pairs. Hereby
the model f II

SW
(·, w) is obtained.

• Best trajectories
The best performing observation-prediction pairs of split II based on EII

i
are merged

5 Model Design and Implementation 48

together with split I. Then this new dataset is used to retrain f I(·, w). Hereby the model
f II
B
(·, w) is obtained. This approach is only taken as reference.

The retraining process is performed with a remarkable smaller number of epochs compared to
the initial training duration of f I(·, w). Finally, the performance of the new models f II

W |R|SW |B(·, w)

is evaluated on split III, thus a dataset that the model has not been trained on.

In order to perform the presented experiments, three synthetic datasets were generated with
Vissim (cf. Attachment 11.4). Hereby, Figure 11-3i is used as scenario 1 whereas Figures
11-3ii and 11-3iii are used for the second scenario captured after A. Note that the trajectories
in Figure 11-3ii show the pedestrians movement behaviour influenced by a construction work
scenario and a blocked road scenario is depicted in 11-3iii.

6 Results and Evaluation 49

6 Results and Evaluation

This chapter gives a detailed discussion and evaluation of the presented approach. In the first
section 6.1, an initial hyper-parameter search is performed and discussed. The performance
of the four different sequence to sequence architectures is compared in section 6.2. A variety
of optimisers were tested and evaluated in section 6.3. On this basis, an optimal configured
sequence to sequence architecture is measured against two baseline models in section 6.4. An
in-depth parameter sensitivity analysis of the RNN is performed in section 6.5. The prediction
stability of the presented approach is visualised and assessed in section 6.6. Further, section
6.7 deals with prediction errors that are caused by missing training data. Two experiments were
executed in order to evaluate the continuous learninig approach. The results are discussed in
section 6.8. Finally, section 6.9 briefly discusses the real-time capabilities of the sequence to
sequence approach.

All computations were executed on GPU devices. In most cases, the GPU Batch System of the
RWTH Compute Cluster was used. It provides several NVIDIA Quadro 6000 GPUs with limited
runtime. Long time computations had to be executed on a desktop computer equipped with a
NVIDIA GeForce GTX 1070.

6.1 Initial Hyperparameter Parameter Search

During the hyperparameter search, it turned out that finding optimal parameter set for each
dataset is an almost impossible task. The high-dimensionality of parameter space leads to
the so-called “curse of dimensionality”. This term implies, that there exists a huge number of
possible parameter combinations that increases exponentially with the amount of dimensions.
In addition, every sample needs a relative high evaluation duration. This results in an enor-
mous overall runtime for a single search. Nevertheless, an initial hyperparameter search was
performed with the tool Hyperopt [BER13b] in order to obtain a rough idea how the param-
eters could be chosen. This tool applies the TPE (Tree-structured Parzen Estimator) search
algorithm that was especially designed for optimising ANN’s hyper-parameters [BER13a].

The optimisation target was to minimise the loss LMSD of the test split. Hereby, 60 optimisation
iterations were executed for all smaller datasets (ETH, Hotel, ATC). 30-40 Iterations were ap-
plied for the large datasets (Laser, Vissim). The default hyperparameter space was deployed,
as described in section 5.7. Further, the default model was used.

All datasets where pre-processes as described in section 5.3, except the ATC dataset. As it
consists of 8 single trajectories, it is statistically inadequate to split these few trajectories with
the standard test train ratio. Therefore, the sliding window method is applied in the first step.
Then, the resulting trajectories were shuffled and this resulting dataset was divided into a train
and test split. Furthermore, the dataset was thinned out with a factor of 0.5 in order to reduce
redundancy.

The optimisation did not lead to an unique optimal parameter configuration for each dataset. But

6 Results and Evaluation 50

this method revealed, that there exists a variety of configurations which resulted in equivalent
model qualities. For example, a RNN with a depth of one and with 128 hidden dimensions
trained for 70 epochs on the ETH datasets had an almost equal loss as a neural net with a
depth of three with 1024 hidden dimensions trained for 150 epochs. But in the latter case, the
training duration was several times higher than in the first case. Hence, the following summary
is a combination of results from the optimisation and a manual selection of samples with a
rather low training duration compared to similar performing samples.

Dataset Depth d Hidden Dimensions h Learning Rate ⌘ Batch Size b Epochs e Dropout p
Small Datasets:
ATC, ETH, Hotel

1 128 0,001 - 0,003 32 70-150 0.0

Large Datasets:
Vissim, Laser

1 128 0,001 - 0,003 32 200-500 0.0

Fig. 6-1: An initial parameter search led to a very basic RNN configuration. Equivalent
performing configurations were dismissed when the sample training duration was
higher.

6.2 Architecture Comparison

In order to compare the four different sequence to sequence architectures, the performance
was measured using identical settings for each of them. Figure 6-2 shows the mean displace-
ment of the four designs depending on the number of training epochs. All models were trained
on the Laser II dataset and the prediction quality was evaluated on the test split. Evidently,
the Simple Sequence to Sequence and the Attention Sequence to Sequence architectures are
outperformed by the Advanced Sequence to Sequence and Advanced Sequence to Sequence
with Peek designs. The bi-directional encoder in the Attention model seems not to be appro-
priate for positional sequences. This poor performance can be explained by the fact, that the
movement of a pedestrian does not have any bi-directional dependencies unlike sequences
from NLP tasks. Further, training such a model takes approx. three times longer to finish due
to the high number of model weights (cf. Figure 6-3). Hence, it can be concluded that the
Advanced Sequence to Sequence design with and without Peek are the most effective archi-
tecture for the trajectory prediction task. The Advanced Sequence to Sequence architecture
without Peek was chosen as the default model. For simplicity, it is referred to as sequence to
sequence model in the following.

As already stated before, GPUs accelerate the training computations of neural nets. The run-
time measurements in Figure 6-3 underline the effectiveness of GPUs. Training a LSTM ar-
chitecture on a CPU needs a significant higher training duration compared to a GPU. Hereby,
the GTX 1070 and a Intel Westmere X5675 CPU were used to train the ATC dataset for 200
epochs. The encoder-decoder design had 128 hidden states an a depth of one.

6.3 Optimiser Comparison

Similar to the previous section, the different optimisers are compared by using a fixed datasets
and identical settings except for the learning rates. The learning rate ⌘ for each optimiser follow

6 Results and Evaluation 51

Fig. 6-2: Performance of the sequence to sequence architectures on dataset Laser II

Architecture Training on CPU Training on GPU Parameters Hidden Dimensions
Simple Sequence to Sequence

section cf. 3.4.2
40 min 6 min 68120 128

Advanced Sequence to Sequence
section cf. 3.4.1

124 min 7 min 199556 128

Advanced Sequence to Sequence
with Peek cf. section 3.4.3

124 min 7 min 199556 128

Attention Sequence to Sequence
cf. section 3.4.4

239 min 22 min 266243 128

Fig. 6-3: Sequence to sequence architectures statistics

those provided in the original papers (cf. Figure 6-5). A simple study on the ETH dataset
shows that the Adam optimiser has the best performance, as shown in Figure 6-4. All other
optimisers, except the standard SGD, perform slightly worse. Similar results where obtained
using different datasets. On this basis, the Adam algorithm was chosen as the default optimiser
for the following experiments. Note that there exists the possibility to tune ⌘ for each optimiser,
but for simplicity the default values were taken.

6.4 Comparison with Baseline Models

In order to assess the prediction quality of the sequence to sequence model, two baseline
models were implemented and applied on the datasets.

The first baseline model is a Kalman filter with a constant velocity movement model. The obser-

6 Results and Evaluation 52

Fig. 6-4: Performance of different optimisers on dataset ETH

Optimiser Default ⌘
Adam 0.001
RMSprop 0.003
SGD 0.01
Nadam 0.002
Adagrad 0.01
Adadelta 1.0

Fig. 6-5: Optimiser default learning rates

vation trajectory is hereby utilised to determine the state of the tracked object. Subsequently,
the state at the last data point of the observation is used to extrapolate the trajectory for Nobs

time steps.

The second baseline model is a FNN, in particular a CNN. A special architecture with 3 con-
volutional layers and an up-sampling layer allows an end-to-end learning in a sequence to
sequence manner. The convolutional layers have a kernel size of eight and a linear activation
function is deployed.

The qualitative model comparison is performed by computing the performance evaluation cri-
teria of each model and for all datasets. Hereby, the results of the proposed encoder-decoder
architecture are obtained by hyper-parameter optimisation. The uncertainty parameters in the
Kalman filter where also determined through an optimisation for each dataset. Further, the

6 Results and Evaluation 53

FNN was roughly tuned and an early stopping mechanism was applied. Both, baseline and
sequence to sequence architectures obtain identical preprocessed trajectories. This should
ensure comparability among them. A train split size of 70% was used. The ATC dataset was
pre-processed as described in section 6.1.

The data in Figure 6-6 indicate, that the RNN outperforms the baseline models on all datasets.
In particular, the performance of the RNN is significantly better in the case of the Laser datasets
as on all other datasets. This can be explained by the different average velocities in the
datasets. The tracked objects in the Laser datasets have a much higher object speed compared
to the other ones (cf. Attachment 11.4). Thus, prediction inaccuracies by the linear and the FNN
model lead to a much worser overall score compared to the pedestrian datasets. Moreover, it is
quite plausible that the Kalman filter performs especially poor in winding datasets. That applies
for ATC, Vissim Case 3 and the laser datasets.

In the case of the Vissim datasets, the RNNs perform remarkably well. This is caused by
the density, homogeneity and redundancy of these simulated trajectories. Hence, the LSTM
is able to develop is full memory capability on these rather unrealistic datasets. The trajec-
tory collections ETH, Hotel and ATC have approximately the same number of captured data
points and a similar pedestrian average speed. Nevertheless the performance on ATC is the
worst compared to the other two. Apparently, the RNN has a higher prediction error for curvy
trajectories.

A comparison with the paper of Alahi et al. [ALA16] yielded, that the prediction error of the
sequence to sequence architecture has a similar order of magnitude as the vanilla LSTM on
the ETH datasets. But the model performance is worse than the Social LSTM approach. Note
that it is not evident whether the metrics and the preprocessing are identically implemented as
in the work of Alahi et al.

Figures 6-7 and 6-8 visualise the results of the Kalman Filter, the CNN and the RNN. In addition,
the real future trajectory and the corresponding observation is shown. These figures indicate,
that the RNN is able to approximate the ground truth much more accurately than the baseline
models. It is clearly visible that the predicted path is fitted on the underlying training data (cyan-
coloured in the background). Further, the prediction of the CNN has a much more volatile
behaviour compared to the other predictions. It underlines that this type of ANN is not supposed
to process sequential data.

6 Results and Evaluation 54

Metric Dataset Kalman filter Sequence to Sequence Feedforward Neural Network

LMSD

ETH 0.651 0.411 0.522
Hotel 0.251 0.140 0.259
ATC 2.380 0.729 1.766

Vissim Case 1 0.309 0.011 0.173
Vissim Case 2 0.875 0.012 0.289
Vissim Case 3 1.290 0.011 0.268

Laser I 21.216 1.100 18.344
Laser II 55.941 0.717 25.914
Laser III 21.134 1.396 20.058

LMD

ETH 0.566 0.504 0.593
Hotel 0.280 0.272 0.386
ATC 0.962 0.590 0.949

Vissim Case 1 0.192 0.034 0.341
Vissim Case 2 0.521 0.059 0.418
Vissim Case 3 0.653 0.042 0.419

Laser I 3.214 0.817 3.392
Laser II 4.554 0.614 3.833
Laser III 2.912 0.815 3.259

LMFD

ETH 1.127 0.876 1.092
Hotel 0.531 0.410 0.593
ATC 1.926 1.097 1.781

Vissim Case 1 0.456 0.076 0.533
Vissim Case 2 1.159 0.114 0.749
Vissim Case 3 1.492 0.086 0.669

Laser I 6.966 1.293 5.726
Laser II 9.785 0.873 7.325
Laser III 6.095 1.346 6.222

Fig. 6-6: Quantitative results of all prediction models on all dataset. The performance for each
model is measured with the proposed model evaluation criteria.

6 Results and Evaluation 55

Fig. 6-7: Sequence to sequence prediction in comparison with baseline models on datasets
ETH and ATC

6 Results and Evaluation 56

Fig. 6-8: Sequence to sequence prediction in comparison with baseline models on datasets
Laser I and II

6 Results and Evaluation 57

6.5 Parameter Dependencies

In the following, some of the most important model parameters are examined in order to obtain
a better understanding for their impact on the neural net’s performance. To achieve this, the
sampling methods described section 5.8 were applied.

In general, it can observed that some parameter responses have a slight scatter due to the
existence of local minima in the loss function. But, in most cases it is possible to recognise the
underlying trend of the particular configurations. A more statistically valid approach would be
the application of a Monte Carlo method. But this approach is impracticable to implement due
to the enormous resulting computational runtime.

Depth Sensitivity

Recent studies on machine learning have shown that “deep” RNNs outperform shallow RNNs
for NLP tasks [HER13] [SUT14]. As can be seen from Figure 6-9, this does not apply to our
setting. Additional stacks on the encoder-decoder architecture do not improve the prediction
quality of the LSTM architecture. However, stacked LSTMs have a higher number of model
weights which causes higher computational cost. In this given example, executing 200 epochs
with a depth of three took also three times longer to finish than with with a depth equal to one.

Fig. 6-9: Sensitivity of the encoder-decoder depth on dataset Laser III

Batch Size

At the beginning of this thesis, the training batch size was a freely tuneable hyperparameter
with unknown effect on the net’s performance. Figure 6-11 indicates that sequence to se-

6 Results and Evaluation 58

quence architecture trained with lower batch sizes perform slightly better in comparison with
models trained with higher batch sizes. Nevertheless, likewise in the previous case, this pa-
rameter influences directly the training runtime, as indicated in Figure 6-10. As a compromise
between runtime and model accuracy, a batch size of 32 was chosen as default value in all
other experiments.

Batch size 8 16 32 64 128
Runtime 53 min 26 min 15 min 9 min 5 min

Fig. 6-10: Different batch size and the corresponding training duration for dataset Laser I

using 200 epochs and 128 hidden dimensions.

Fig. 6-11: Sensitivity of the training batch size on dataset Laser I

Learning Rate

The influence of the learning rate on the training progress was investigated by using the Adam
optimiser and variations of its default learning rate ⌘ = 0.001. Figure 6-12 suggests that there is
no discernible trend whether higher or lower learning rates have a positive effect on the model’s
quality. It appears that the adaptivity of the algorithm enables robust training without an in-depth
learning rate tuning.

Dropout

Diverse studies have shown that dropout can improve the performance of neural networks, this
applies in particular to CNN. Further, it prevents the neural net from overfitting [SRI14]. Adding
dropout to our setting had no unequivocal impact on the models performance, as indicated in
Figure 6-13. In general, the preprocessing step sliding window causes that the train dataset

6 Results and Evaluation 59

Fig. 6-12: Sensitivity of the learning rate of the Adam optimiser using dataset Laser III

consists of partially very similar trajectories and this redundancy could naturally prevent the
net from overfitting [JAI15]. Hence, an additional regularisation method such as dropout is not
necessary. However, a considerable disadvantage of activating dropout is that it halves the
training speed. As a result, dropout was deactivated by default for all other experiments.

Observation Length & Hidden Dimensions

Another interesting aspect of the whole approach is the influence of the observation length
Nobs on the prediction quality. To investigate the observation length in combination with the
hidden dimension of the RNN, the two-dimensional sampling method was applied. As can be
seen in Figure 6-14, the prediction network needs at least two data points in order capture the
movement dynamics of the tracked object. Providing only a single datapoint causes a large
prediction error. Subsequently, higher observation times lead to a better model prediction.
A similar behaviour was observed for all other datasets. To ensure comparability between
literature and this thesis, the default observation length was set to Nobs = 8 that corresponds to
3.2 [s] using a sample rate of 2.5 [Hz].

Moreover, Figure 6-14 shows that the RNN with 128 hidden dimension performs slightly better
compared to the same network with 64 and 32 hidden dimensions. Additional studies have
proven that the sequence to sequence model with 128 hidden dimensions had good cost-
performance ratio with the result that this value is used by default.

6 Results and Evaluation 60

Fig. 6-13: Sensitivity of dropout using dataset Laser III

Fig. 6-14: Sensitivity of the observation length and the number of hidden dimensions on
dataset Laser I. Every sample was computed with 200 epochs.

6 Results and Evaluation 61

6.6 Prediction Stability

The prediction stability analysis is performed by using the presented uncertainty analysis in
section 5.9. Each dataset was investigated with the default parameter set and the sequence
to sequence model. The training was stopped when the prediction quality converged. The re-
sulting stability heat maps were manually examined. It was generally observed that the model
prediction did not show any serious instabilities. A few chosen examples of the stability visuali-
sations are depicted in Figure 6-15 and 6-16.

Figure 6-15i indicates that the predictions of the perturbed observation trajectories of one mov-
ing individual results in a distribution with a conical shape. The model prediction can be cate-
gorised as a stable, because distribution is located in the close proximity of the ground truth.
This applies for also an pedestrian moving in the direction. But, due to the diverging move-
ments on the left half of the dataset, the distribution of the “leaving pedestrian” has a much
bigger range than in the previous example (cf. 6-15ii). The predicted distribution for a standing
pedestrian is indicated in Figure 6-15iii. This example was chosen, because the observation
trajectory is located in an area with a sparse trajectory density. However, the positional vari-
ations seem to be plausible, when regarding the maximal extent of the predictions. Thus, a
regional lack of training data does not lead necessarily to an unstable model behaviour. Other
examined samples of this dataset underline this conclusion.

Prediction models that were obtained by training one of the laser datasets have slight different
characteristics than in the previous cases. This is caused by the fact, that these datasets con-
tain mainly vehicles with high velocities. That induces a smoother movement pattern compared
to pedestrian trajectories. Figure 6-16i depicts a right turn manoeuvre and the corresponding
heat map implies that the model predicts a variety of different curves in the close proximity of
the real future path. Furthermore, twelve clusters are visible which is equivalent to the predic-
tion length. This implies that the predicted trajectories have an approximately equal velocity.
This pattern can also be observed in Figure 6-16iii, but with a much more precise prediction.
From this it appears that predicting vehicle movements is much more reliable. Similar results
where obtained on the other laser datasets.

It is important to stress, that the above presented examples are believed to be representa-
tive samples. It cannot be excluded that certain model inputs could cause an unstable model
response. Thus, a more statistically valid method has to be elaborated and applied in future
investigations.

6 Results and Evaluation 62

(i) Arriving pedestrian on dataset ETH

(ii) Leaving pedestrian on dataset ETH

(iii) Standing pedestrian on dataset Hotel

Fig. 6-15: Model prediction stability using dataset ETH and Hotel

6 Results and Evaluation 63

(i) Right turn with small scatter in the prediction

(ii) Right turn with stable prediction

(iii) Right turn with stable prediction

Fig. 6-16: Model prediction stability using dataset Laser II

6 Results and Evaluation 64

6.7 Incorrect Predictions

The prediction quality of the sequence to sequence approach is directly dependent on the
density of the training data. Hence, a regional lack of captured pedestrian movements results
in poor predictions in these certain areas. Figure 6-17i and 6-17ii depict two examples for
an incorrect model prediction. Both figures show that the RNN is not able to generalise the
underlying data. A possible workaround for this issue would be to use an alternative prediction
model, for instance a linear model, in areas with sparse data.

(i) Example for a poorly predicted pedestrian
trajectory on dataset ETH

(ii) Example for a poorly predicted pedestrian
trajectory on dataset Hotel

Fig. 6-17: Bad model predictions due to a lack of regional training data

6.8 Continuous Learning

The results of the continuous learning approach are presented in the following sections. Hereby,
two different intersection scenarios are simulated by using the synthetic Vissim datasets.

6.8.1 Case “Construction Work”

The following continuous learning experiment was performed with dataset Vissim Case 1 as
split I and Vissim Case 2 the second scenario. By this means, a virtual event A is introduced
that forces the pedestrians to move differently on the lower sidewalk (cf. Figure 11-3ii).

Due to the homogeneity, redundancy and the density of the synthetic datasets, the initial training
of f I(·, w) leads to a very well-fitted model. Figure 6-18i visualises the squared error for each
predicted datapoint on basis of a test dataset taken from split I. The coloured partition of the
heat map represent the error between the predictions and the ground truth trajectories. The
highest prediction error occurs in the bifurcation area where the pedestrian movement diverges.
The error vanishes in all other regions.

6 Results and Evaluation 65

Now we consider the occurrence of event A. Subsequently, the prediction error of split II is
measured and the resulting error map is show in Figure 6-18ii. Clearly, a prediction error is
induced by the changed movement behaviour in the close proximity of the virtual obstacle.

(i) Prediction error map of f I(·, w) evaluated on a
test dataset taken from split I

(ii) Prediction error map of split II evaluated on
f I(·, w)

Fig. 6-18: Error Maps of split I and split II evaluated on f I(·, w)

On this basis, a continuously learning prediction model would detected the abnormal high pre-
diction error in certain areas. Hence, in order to improve the models’s prediction, a retraining
of f(·, w) would be initiated. To determine the effectiveness of the different retraining methods
proposed in section 5.10, the cost-performance ratio for each of them is investigated in the
following.

As cost we understand the retraining duration that dependents linearly on the training dataset
size whereas performance is defined by a loss function L. As we know, all proposed methods
combine trajectories from split I and II in order to retrain f I(·, w). Hereby, only a fraction ↵II

of split II is added to the new train dataset, because it should be avoided that the new dataset
becomes too large. Therefore, the sensitivity of ↵II with respect to the prediction quality for
each approach is investigated.

For this purpose, fraction ↵II
i

is varied from 0 to 1 by

↵II
i = 0.05 ⇤ i 8 i = 0, . . . , 20 Eq. 6-1

and the retraining is performed for each of these values. Note that training the initial model
f I(·, w) needs 500 epochs, whereas the retraining takes 250 epochs. Other settings stayed
fixed. To determine the ”cost“ for each method, the retraining duration was measured during

6 Results and Evaluation 66

the experiment. All methods, except Sliding Window, need for an ↵1 = 0.05 45 minutes and for
an ↵20 = 1 90 minutes to retrain. Sliding Window has a constant sized retraining dataset size
and thus a fixed training duration of 45 minutes.

Figure 6-19 depicts the results for different retrain methods for all ↵II
i

. One can see, that
the methods Random Trajectories and Sliding Window have very similar behaviour. Both ap-
proaches need only a fraction ↵II

1 = 0.05 of split II to improve the model’s predictions signifi-
cantly. Furthermore, the model improves only slightly, when more than 5 % of the trajectories
are added to the training dataset.

The method Worst Trajectories performs marginally worse than Random Trajectories and Slid-
ing Window. A similar performance is reached, when more than 40% of the worst observation-
-prediction pairs of split II are added to the training dataset. This corresponds to a runtime
of 62 minutes. Figure 6-20iii and Figure 6-20vi give an explanation for this behaviour. The
worst 5% and 10% trajectories of split II are located on a relative small area compared to the
covered pathways in Figure 6-20v and in Figure 6-20vi. Hence, during the retraining with the
Worst Trajectories method, the afflicted area is not fully covered. As shown in Figure 6-20ii,
a small prediction error remains in the proximity of the “construction work” after retraining with
↵II = 0.05. Thus, the Worst Trajectories method has in this special setting an inferior price-
performance ratio in comparison with the two previous methods.

Note that the method Best Trajectories is intended to be a reference. One can see, that the
model performance on split III is not improving before ↵II

i
> 0.55. Evidently, training only

good performing trajectories from split II does not continue to improve the model. This method
reaches a similar prediction quality for ↵II > 0.9. At this point almost the whole split II and split
I are jointly trained, which leads to an overall retraining duration of 85 minutes.

6 Results and Evaluation 67

Fig. 6-19: Sensitivity of ↵II
i
⇤ 100% on the model’s prediction performance on split III. The

retrain methods Random Trajectories, Worst Trajectories, Sliding Window and Best
Trajectories (only as reference) were used.

6 Results and Evaluation 68

(i) Prediction error map of split III after
training split I

(ii) Prediction error map of split III
after training split I merged with the
worst 5% observation trajectories

of split II

(iii) Worst 5% observation trajectories
of split II

(iv) Worst 10% observation
trajectories of split II

(v) Random: 5% random observation
trajectories of split II

(vi) Sliding Window: First 5% of the
observation trajectories of split II

Fig. 6-20: The continuous learning setting in the case “Construction Work”

6 Results and Evaluation 69

6.8.2 Case “Blocked Road”

In the second experiment, dataset Vissim Case 3 is divided equally into split II and split III. As
in the previous experiment, split I is represented by Vissim Case 1. This setting is intended to
simulate a blocked road scenario (cf. Figure 11-3i and Figure 11-3iii).

Due to the extraordinary different movement pattern, a high prediction error occurs in the area
where the pavement of the pedestrians is blocked. This is clearly visible in Figure 6-22i. Note
that the squared error is added in the cells of the heat map, so that this experiment has a maxi-
mal error which is many times higher than in the first experiment. Subsequently, the trajectories
with the worst prediction performance are located in the same zone (cf. Figure 6-22ii).

The qualitative results for the methods Sliding Window and Random Trajectories are identical
to the experiment above. Retraining the model with a few additional trajectories from split II
leads immediately to a good model performance, which is evident in Figure 6-21. In contrast,
retraining the model with the worst observation-prediction pairs leads to a significant inferior
performance. Figures 6-22ii, 6-22iii and 6-22iv indicate that the area covered by the worst
trajectories is much smaller compared to the covered area of the two other methods. Hence, for
small ↵II only a limited area located in the curve is improved but not the error-prone surrounding
area. Thus, retraining with the Worst Trajectory method is less effective in this special setting.

Fig. 6-21: Impact of ↵II
i
⇤ 100% on the model’s prediction performance of split III. The retrain

methods Random Trajectories, Worst Trajectories and Sliding Window were used.

6 Results and Evaluation 70

(i) Prediction error map of split II
evaluated on f I(·, w)

(ii) Worst 5% of the prediction trajectories
of split II

(iii) Sliding Window: First 5% of the
observation trajectories of split II

(iv) Random: 5% of the observation
trajectories of split II

Fig. 6-22: The continuous learning setting in the case “Blocked Road”

6.8.3 Evaluation Continuous Learning

It was shown that retraining a fitted model is an effective approach for a continuously learning
mechanism. The reuse of the pre-trained model saves computational runtime when adapting
to new movement patterns. The initial idea that reinforced learning of error-prone trajectories
improves the prediction quality is validated. But this specific setting and the applied synthetic
datasets caused a worse performance than the Sliding Window and the Random Trajectory
method. Due to the density of the datasets, training the worst trajectories caused a local “over-
heat” of training data. Hence, redundant bad performing samples are unnecessarily trained
together while less error-prone observation-prediction pairs were ignored during the retraining.

6 Results and Evaluation 71

This undesirable behaviour was identified by the error map visualisation method.

For future investigations, a more sophisticated approach has to be developed that has a better
regularised merging method. An excessive redundancy in good performing trajectories but also
in bad performing trajectories has to be avoided. By this means, the retraining dataset has to
be combined in such a fashion that the trajectories cover the scenario in the most effective
way. There is a presumption that such an approach has a better cost-performance ratio than
a Sliding Window or a randomised method. Furthermore, there is a urgent need for realistic
datasets.

6.9 Model Evaluation Latency

In order to measure the latency of the default sequence to sequence model, an observation
dataset with 70716 single trajectories of length 8 was evaluated. The RNN had 128 hidden
states and a depth of 1. The GeForce GTX 1070 needed 0.68 [s] to perform this task. Hereby,
a batch size of 512 was used. When the batch size was doubled to 1028, the model evaluation
took 0.60 [s]. A smaller dataset consisting of 7469 observation trajectories needed a runtime of
0, 045 [s] to be evaluated. Without any further in-depth investigations, it can be stated that such
a model seems to be real-time capable on modern GPU devices.

7 Conclusion and Outlook 72

7 Conclusion and Outlook

This thesis presented a holistic approach for pedestrian trajectory prediction with recurrent
neural networks at urban scenarios. State of the art Long Short-Term Memory designs where
deployed in order to learn preprocessed trajectories in an end-to-end fashion. The architecture
was tested and validated on publicly available pedestrian datasets. In addition to that, datasets
obtained by laser scanner measurements of various road users and synthetic human trajectory
datasets have been successfully applied. In all cases the neural network was able to predict
future individual movements with a good accuracy for a given history trajectory. The overall
prediction quality of the model was hereby measured by several performance evaluation crite-
ria. On this basis, it was qualitatively shown that the proposed method outperformed two basic
baseline models on all datasets. During the development of this work, a flexible Python frame-
work was implemented that contains complex pre-processing and visualisation routines.

Further analyses demonstrated that uncertainties in the input of such model do not necessarily
lead to instabilities in the prediction. This behaviour was observed on manually evaluated
stability visualisations. However, it would be conceivable that abnormal model input would
cause inconsistent predictions. Thus, future investigations should include a statistically valid
approach that determines the overall model stability.

To answer the first research question, several in-depth investigations have been carried out.
In this respect, the effect of hyper-parameters, training configurations and RNN architectures
were assessed. It turned out that a shallow advanced sequence to sequence architecture with
128 hidden dimensions had the best cost-performance ratio. Furthermore, the ideal amount of
training epochs and the best performing optimiser were determined.

A continuous learning scenario was simulated by two synthetic scenarios. Different data merg-
ing methods were proposed that are intended to retrain an already fitted prediction model. In
this way, the model efficiently adapted to time-dependent changes of movement patterns. The
result of this approach provided insights to answer to the second research question: An ef-
ficient continuous learning method for intersections scenarios can be achieved by a reinforced
training of badly predicted observations. In this process, redundancy in the training dataset has
to be avoided. Future investigations should validate the findings on more realistic datasets.

The presented machine learning approach steadily depends on the quality and density of the
spatial datasets. It was shown that a regional limited lack of training trajectories can lead to
high prediction errors in these certain areas. Hence, the model is not able to learn physical
movement dynamics, but rather position-dependent movement patterns. For future work, it is
recommended to investigate different pre-processing methods. For example, additional infor-
mation such as the yaw rate of the tracked object could be taken into consideration in order to
provide the neural net additional information about movement dynamics. A different approach
to improve the prediction would be to replace the RNN with a traditional prediction model, such
as the Kalman filter, if the current observation is located in an area with low data density.

7 Conclusion and Outlook 73

Although compelling results have been achieved in this thesis, it has to be admitted that the
applied datasets are not quite appropriate for the presented setting. The ETH datasets do not
depict at an intersection scenario, the laser datasets contain vehicles and the Vissim datasets
are quite unrealistic. Therefore, it is inevitable to validate the results of this thesis by using
realistic pedestrian trajectory datasets captured at intersections. These new datasets could be
obtained by camera-equipped drones that record crowded urban scenarios.

Acknowledgements

I would like to thank my supervisor Julian Bock for the help, proofreading and advice during the
development of this thesis.

8 Literature 74

8 Literature

[ABA15] ABADI, M.; AGARWAL, A.; BARHAM, P.; BREVDO, E.; CHEN, Z.; CITRO, C., et
al.,
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
Software available from tensorflow.org, 2015

[ADA17a] ADAC - ALLGEMEINER DEUTSCHER AUTOMOBIL-CLUB,
Statistik - Fußgänger
https://www.adac.de/_mmm/pdf/statistik_5_1_fu%C3%9Fgaenger_z_43081.pdf,
accessed 04-March-2017, 2017

[ADA17b] ADAC - ALLGEMEINER DEUTSCHER AUTOMOBIL-CLUB,
Statistik - Unfallarten und Verunglückte
https://www.adac.de/_mmm/pdf/statistik_8_2_unfallarten_42784.pdf, accessed
04-March-2017, 2017

[ADA17c] ADAC - ALLGEMEINER DEUTSCHER AUTOMOBIL-CLUB,
Statistik - Unfälle Ortslage
https://www.adac.de/_mmm/pdf/statistik_4_1_innerorts_42803.pdf, accessed
04-March-2017, 2017

[ALA16] ALAHI, A.; GOEL, K.; RAMANATHAN, V.; ROBICQUET, A.; FEI-FEI, L.; SAVARESE,
S.,
Social LSTM: Human Trajectory Prediction in Crowded Spaces
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016

[BA14] BA, J.; CARUANA, R.,
Do deep nets really need to be deep?
Advances in neural information processing systems, 2014, pp. 2654–2662

[BAH14] BAHDANAU, D.; CHO, K.; BENGIO, Y.,
Neural Machine Translation by Jointly Learning to Align and Translate
CoRR abs/1409.0473 (2014)

[BAL16] BALLAN, L.; CASTALDO, F.; ALAHI, A.; PALMIERI, F.; SAVARESE, S.,
Knowledge Transfer for Scene-specific Motion Prediction
CoRR abs/1603.06987 (2016)

[BAS00] BASHEER, I.; HAJMEER, M.,
Artificial neural networks: fundamentals, computing, design, and application
Journal of microbiological methods 43.1 (2000), pp. 3–31

[BEN12] BENGIO, Y.,
Practical recommendations for gradient-based training of deep architectures
CoRR abs/1206.5533 (2012)

[BEN94] BENGIO, Y.; SIMARD, P.; FRASCONI, P.,
Learning long-term dependencies with gradient descent is difficult
IEEE transactions on neural networks 5.2 (1994), pp. 157–166

https://www.adac.de/_mmm/pdf/statistik_5_1_fu%C3%9Fgaenger_z_43081.pdf
https://www.adac.de/_mmm/pdf/statistik_8_2_unfallarten_42784.pdf
https://www.adac.de/_mmm/pdf/statistik_4_1_innerorts_42803.pdf

8 Literature 75

[BER13a] BERGSTRA, J.; YAMINS, D.; COX, D. D.,
Making a Science of Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures
Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, Atlanta, GA, USA: JMLR.org, 2013, pp. I-
115–I-123

[BER13b] BERGSTRA, J.; YAMINS, D.; COX, D. D.,
Making a Science of Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures
Proceedings of the 30th International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, 2013, pp. 115–123

[BOH08] BOHM, A.; JONSSON, M.,
Supporting real-time data traffic in safety-critical vehicle-to-infrastructure commu-
nication
Local Computer Networks, 2008. LCN 2008. 33rd IEEE Conference on, IEEE,
2008, pp. 614–621

[BRO16] BROUWER, N.; KLOEDEN, H.; STILLER, C.,
Comparison and evaluation of pedestrian motion models for vehicle safety systems
2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), 2016, pp. 2207–2212

[CHO14] CHO, K.; MERRIENBOER, B. van; GÜLÇEHRE, Ç.; BOUGARES, F.; SCHWENK,
H.; BENGIO, Y.,
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Ma-
chine Translation
CoRR abs/1406.1078 (2014)

[CHO15] CHOLLET, F.,
Keras - Deep Learning library for Theano and TensorFlow
https://github.com/fchollet/keras, accessed 01-December-2016, 2015

[COU15] COURBARIAUX, M.; BENGIO, Y.; DAVID, J.-P.,
BinaryConnect: Training Deep Neural Networks with binary weights during propa-
gations
In: Advances in Neural Information Processing Systems 28, ed. by CORTES, C.;
LAWRENCE, N. D.; LEE, D. D.; SUGIYAMA, M.; GARNETT, R., Curran Associates,
Inc., 2015, pp. 3123–3131

[DEU17] DEUTSCHES FORSCHUNGSZENTRUM FÜR KÜNSTLICHE INTELLIGENZ GMBH,
SADA - Smart Adaptive Data Aggregation
http://robotik.dfki-bremen.de/de/forschung/projekte/sada.html, accessed 2-March-
2017, 2017

[DUC11] DUCHI, J.; HAZAN, E.; SINGER, Y.,
Adaptive subgradient methods for online learning and stochastic optimization
Journal of Machine Learning Research 12.Jul (2011), pp. 2121–2159

8 Literature 76

[ELM90] ELMAN, J. L.,
Finding structure in time
Cognitive science 14.2 (1990), pp. 179–211

[GER00] GERS, F. A.; SCHMIDHUBER, J. A.; CUMMINS, F. A.,
Learning to Forget: Continual Prediction with LSTM
Neural Comput. 12.10 (2000), pp. 2451–2471

[GER03a] GERS, F. A.; SCHRAUDOLPH, N. N.; SCHMIDHUBER, J.,
Learning Precise Timing with LSTM Recurrent Networks
J. Mach. Learn. Res. 3 (2003), pp. 115–143

[GER03b] GERSHENSON, C.,
Artificial Neural Networks for Beginners
CoRR cs.NE/0308031 (2003)

[GMB16] GMBH, R. B.,
Lokale Clouds für mehr Verkehrssicherheit
http : / / www. bosch - presse . de / pressportal / de / de / lokale - clouds - fuer - mehr -
verkehrssicherheit-63296.html, accessed 06-February-2017, 2016

[GRA05] GRAVES, A.; SCHMIDHUBER, J.,
Framewise phoneme classification with bidirectional LSTM and other neural net-
work architectures
Neural Networks 18.5 (2005), pp. 602–610

[GRA09] GRAVES, A.; LIWICKI, M.; FERNÁNDEZ, S.; BERTOLAMI, R.; BUNKE, H.; SCHMID-
HUBER, J.,
A novel connectionist system for unconstrained handwriting recognition
IEEE transactions on pattern analysis and machine intelligence 31.5 (2009), pp. 855–
868

[GRA12] GRAVES, A.,
Supervised Sequence Labelling with Recurrent Neural Networks
Vol. 385, Studies in Computational Intelligence, Springer, 2012

[GRA13] GRAVES, A.,
Generating Sequences With Recurrent Neural Networks
CoRR abs/1308.0850 (2013)

[HAS15] HASHIMOTO, Y.; YANLEI, G.; HSU, L.-T.; SHUNSUKE, K.,
A Probabilistic Model for the Estimation of Pedestrian Crossing Behavior at Signal-
ized Intersections
Proceedings of the 2015 IEEE 18th International Conference on Intelligent Trans-
portation Systems, ITSC ’15, Washington, DC, USA: IEEE Computer Society, 2015,
pp. 1520–1526

[HEL90] HELBING, D.,
Physical Modeling of the Dynamic Behavior of Pedestrians
PhD thesis, Georg-August-Universität zu Göttingen, 1990

http://www.bosch-presse.de/pressportal/de/de/lokale-clouds-fuer-mehr-verkehrssicherheit-63296.html
http://www.bosch-presse.de/pressportal/de/de/lokale-clouds-fuer-mehr-verkehrssicherheit-63296.html

8 Literature 77

[HEL97] HELBING, D.,
Selbstorganisation kollektiver Phänomene
In: Verkehrsdynamik, Springer, 1997, pp. 37–44

[HER13] HERMANS, M.; SCHRAUWEN, B.,
Training and Analysing Deep Recurrent Neural Networks
In: Advances in Neural Information Processing Systems 26, ed. by BURGES, C. J. C.;
BOTTOU, L.; WELLING, M.; GHAHRAMANI, Z.; WEINBERGER, K. Q., Curran As-
sociates, Inc., 2013, pp. 190–198

[HOC01] HOCHREITER, S.; BENGIO, Y.; FRASCONI, P.,
Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependen-
cies
(2001)

[HOC97] HOCHREITER, S.; SCHMIDHUBER, J.,
Long Short-Term Memory
Neural Comput. 9.8 (1997), pp. 1735–1780

[HOR91] HORNIK, K.,
Approximation capabilities of multilayer feedforward networks
Neural networks 4.2 (1991), pp. 251–257

[I2E17] I2EASE,
Intelligence for efficiently electrified and automated driving through sensor network-
ing
http://www.cerm.rwth-aachen.de/i2ease/, accessed 2-March-2017, 2017

[JAI15] JAIN, A.; SINGH, A.; KOPPULA, H. S.; SOH, S.; SAXENA, A.,
Recurrent Neural Networks for Driver Activity Anticipation via Sensory Fusion Ar-
chitecture
CoRR abs/1509.05016 (2015)

[JON15] JONES, E.; OLIPHANT, T.; PETERSON, P., et al.,
SciPy: Open source scientific tools for Python
http://www.scipy.org/, accessed 09-March-2017, 2015

[KÄD16] KÄDING, C.; RODNER, E.; FREYTAG, A.; DENZLER, J.,
Active and Continuous Exploration with Deep Neural Networks and Expected Model
Output Changes
(2016)

[KAL15] KALCHBRENNER, N.; DANIHELKA, I.; GRAVES, A.,
Grid Long Short-Term Memory
CoRR abs/1507.01526 (2015)

[KAR15] KARPATHY, A.,
The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/, accessed 20-December-2016,
2015

8 Literature 78

[KEL14] KELLER, C. G.; GAVRILA, D. M.,
Will the pedestrian cross? A study on pedestrian path prediction
IEEE Transactions on Intelligent Transportation Systems 15.2 (2014), pp. 494–506

[KIN14] KINGMA, D. P.; BA, J.,
Adam: A Method for Stochastic Optimization
CoRR abs/1412.6980 (2014)

[KRI12] KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E.,
Imagenet classification with deep convolutional neural networks
Advances in neural information processing systems, 2012, pp. 1097–1105

[LAW97] LAWRENCE, S.; GILES, C. L.; TSOI, A. C.; BACK, A. D.,
Face recognition: A convolutional neural-network approach
IEEE transactions on neural networks 8.1 (1997), pp. 98–113

[LIP15] LIPTON, Z. C.,
A Critical Review of Recurrent Neural Networks for Sequence Learning
CoRR abs/1506.00019 (2015)

[LIV10] LIVNAT, A.; PAPADIMITRIOU, C.; PIPPENGER, N.; FELDMAN, M. W.,
Sex, mixability, and modularity
Proceedings of the National Academy of Sciences 107.4 (2010), pp. 1452–1457

[LUB10] LUBER, M.; STORK, J. A.; TIPALDI, G. D.; ARRAS, K. O.,
People tracking with human motion predictions from social forces
Robotics and Automation (ICRA), 2010 IEEE International Conference on, IEEE,
2010, pp. 464–469

[MEI14] MEISSNER, D.; REUTER, S.; STRIGEL, E.; DIETMAYER, K.,
Intersection-based road user tracking using a classifying multiple-model PHD filter
IEEE Intelligent Transportation Systems Magazine 6.2 (2014), pp. 21–33

[OLA15] OLAH, C.,
Understanding LSTM Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs/, accessed 20-December-
2016, 2015

[PAP02] PAPINENI, K.; ROUKOS, S.; WARD, T.; ZHU, W.-J.,
BLEU: a method for automatic evaluation of machine translation
Proceedings of the 40th annual meeting on association for computational linguis-
tics, Association for Computational Linguistics, 2002, pp. 311–318

[PAS12] PASCANU, R.; MIKOLOV, T.; BENGIO, Y.,
Understanding the exploding gradient problem
CoRR abs/1211.5063 (2012)

[PED11] PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.;
GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.;
VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT,
M.; DUCHESNAY, E.,

8 Literature 79

Scikit-learn: Machine Learning in Python
Journal of Machine Learning Research 12 (2011), pp. 2825–2830

[PEL09] PELLEGRINI, S.; ESS, A.; SCHINDLER, K.; VAN GOOL, L.,
You’ll never walk alone: Modeling social behavior for multi-target tracking
Computer Vision, 2009 IEEE 12th International Conference on, IEEE, 2009, pp. 261–
268

[PTV17] PTV PLANUNG TRANSPORT VERKEHR,
PTV Vissim - Verkehrsfluss-Simulationssoftware
http://vision-traffic.ptvgroup.com/de/produkte/ptv-vissim/, accessed 5-February-2017,
2017

[RAH16a] RAHMAN, F.,
Recurrent Shop - Framework for building complex recurrent neural networks with
Keras
https://github.com/datalogai/recurrentshop, accessed 20-December-2016, 2016

[RAH16b] RAHMAN, F.,
seq2seq - Sequence to sequence library add-on for Keras
https://github.com/farizrahman4u/seq2seq, accessed 20-December-2016, 2016

[REH15] REHDER, E.; KLOEDEN, H.,
Goal-directed pedestrian prediction
Proceedings of the IEEE International Conference on Computer Vision Workshops,
2015, pp. 50–58

[ROB16] ROBICQUET, A.; SADEGHIAN, A.; ALAHI, A.; SAVARESE, S.,
Learning Social Etiquette: Human Trajectory Understanding In Crowded Scenes
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part VIII, 2016, pp. 549–565

[RUM86] RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J.,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
In: ed. by RUMELHART, D. E.; MCCLELLAND, J. L.; PDP RESEARCH GROUP, C.,
Cambridge, MA, USA: MIT Press, 1986, chap. Learning Internal Representations
by Error Propagation, pp. 318–362

[SCH97] SCHUSTER, M.; PALIWAL, K.,
Bidirectional Recurrent Neural Networks
Trans. Sig. Proc. 45.11 (1997), pp. 2673–2681

[SEE14] SEELIGER, F.; WEIDL, G.; PETRICH, D.; NAUJOKS, F.; BREUEL, G.; NEUKUM,
A.; DIETMAYER, K.,
Advisory warnings based on cooperative perception
Intelligent Vehicles Symposium Proceedings, 2014 IEEE, IEEE, 2014, pp. 246–252

[SER11] SERMANET, P.; LECUN, Y.,
Traffic sign recognition with multi-scale convolutional networks
Neural Networks (IJCNN), The 2011 International Joint Conference on, IEEE, 2011,
pp. 2809–2813

8 Literature 80

[SHA16] SHAH, R.; ROMIJNDERS, R.,
Applying Deep Learning to Basketball Trajectories
CoRR abs/1608.03793 (2016)

[SRI14] SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUT-
DINOV, R.,
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Journal of Machine Learning Research 15 (2014), pp. 1929–1958

[SUT13] SUTSKEVER, I.,
Training recurrent neural networks
PhD thesis, University of Toronto, 2013

[SUT14] SUTSKEVER, I.; VINYALS, O.; LE, Q. V.,
Sequence to Sequence Learning with Neural Networks
CoRR abs/1409.3215 (2014)

[TAM10] TAMURA, Y.; FUKUZAWA, T.; ASAMA, H.,
Smooth collision avoidance in human-robot coexisting environment
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010,
pp. 3887–3892

[THE16] THEANO DEVELOPMENT TEAM,
Theano: A Python framework for fast computation of mathematical expressions
arXiv e-prints abs/1605.02688 (2016)

[TIE12] TIELEMAN, T.; HINTON, G.,
RmsProp: Divide the gradient by a running average of its recent magnitude
Neural Networks for Machine Learning, 2012

[TIM14] TIMMARAJU, A.; KHANNA, V.,
Sentiment Analysis on Movie Reviews using Recursive and Recurrent Neural Net-
work Architectures
(2014)

[VIN14] VINYALS, O.; TOSHEV, A.; BENGIO, S.; ERHAN, D.,
Show and Tell: A Neural Image Caption Generator
CoRR abs/1411.4555 (2014)

[VIN15] VINYALS, O.; LE, Q. V.,
A Neural Conversational Model
CoRR abs/1506.05869 (2015)

[WAL14] WALKER, J.; GUPTA, A.; HEBERT, M.,
Patch to the future: Unsupervised visual prediction
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 3302–3309

[WER90] WERBOS, P. J.,
Backpropagation through time: what it does and how to do it
Proceedings of the IEEE 78.10 (1990), pp. 1550–1560

8 Literature 81

[WIL90] WILLIAMS, R. J.; PENG, J.,
An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network
Trajectories
Neural Computation 2 (1990), pp. 490–501

[WOR17] WORLD HEALTH ORGANIZATION,
Global Status Report on Road Saftey 2013
http : / /www.who. int /violence_ injury_prevention / road_safety_status /2013/en/,
accessed 3-March-2017, 2017

[XIA14] XIAO, T.; ZHANG, J.; YANG, K.; PENG, Y.; ZHANG, Z.,
Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-
Scale Image Classification
ACM Multimedia, 2014

[YAM11] YAMAGUCHI, K.; BERG, A. C.; ORTIZ, L. E.; BERG, T. L.,
Who are you with and where are you going?
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,
IEEE, 2011, pp. 1345–1352

[YAO15] YAO, K.; COHN, T.; VYLOMOVA, K.; DUH, K.; DYER, C.,
Depth-Gated LSTM
CoRR abs/1508.03790 (2015)

[ZAR14] ZAREMBA, W.; SUTSKEVER, I.,
Learning to Execute
CoRR abs/1410.4615 (2014)

[ZEI12] ZEILER, M. D.,
ADADELTA: An Adaptive Learning Rate Method
CoRR abs/1212.5701 (2012)

http://www.who.int/violence_injury_prevention/road_safety_status/2013/en/

9 Literature 82

9 List of Abbreviations

ADAS Advanced Driver Assistance Systems
ANN Artificial Neural Network
ATC Aldenhoven Testing Center
cf. compare with
CNN Convolutional Neural Network
DNN Deep Neural Network
E.g. For example
e.g. for example
ETH Swiss Federal Institute of Technology
Fig. Figure
FNN Feedforward Neural Network
GPS Global Positioning System
GPU Graphics Processing Unit
I2EASE Intelligence for efficiently electrified and automated driving through

sensor networking
I2V Infrastructure-to-Vehicle Communication
Ko-FAS Cooperative driver assistance systems
LSTM Long-Short Term Memory
MD Mean Displacement
MFD Mean Final Displacement
MSD Mean Squared Displacement
MSE Mean Squared Error
NLP Natural language processing
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SADA Smart Adaptive Data Aggregation
Seq2Seq Sequence to Sequence
SF Social Forces
SGD Stochastic Gradient Decent
V2X Vehicle-to-everything Communication
VRU Vulnerable Road Users

10 Literature 83

10 List of Symbols

vavg Average velocity
Hz Herz
fs Sampling rate
Yi Trajectory i
m Meter
� Sigmoid function
tanh Tangens Hyperbolicus
⌃ standard deviation of the Gaussian kernel
O Observation Trajectories
P True prediction trajectories
P̂ Model prediction trajectories
↵ Train split factor
L Loss function
p Dropout probability
Npred Number of data points of the prediction
Nobs Number of data points of the observation
h Hidden dimensions of a neural net
⌘ Learning rate of an optimiser
b Training batch-size
e Number of training epochs
d Depth of a RNN
A Event at an intersection scenario
t Time
f(·, w) Trained model
E Prediction Error

11 Appendix 84

11 Appendix

11.1 Attachment A: Default Configuration File

Listing 11.1: Example configuration file

1 [general]
2 save_dir = eth_output_dir
3 data = eth
4 verbose = 2
5 random_seed = 42
6 save_weights = True
7 save_scaled_trajectories = True
8

9 [model]
10 architecture = seq2seq
11 hidden_dim = 128
12 nb_epoch = 200
13 loss = mean_squared_displacement
14 batch_size = 32
15 scale_learning_rate = 1.0
16 clipvalue = 1
17 optimizer = adam
18 earlyStopping_patience = 20
19 depth = 1
20 dropout = 0.2
21

22 [preprocessing]
23 split = 0.7
24 shuffle_all_trajectories = False
25 observationLength = 8
26 predictionLength = 12
27 overlapping = 0
28 smoothing_sigma = 1
29

30 [plotting]
31 n_stability_plots = 100
32 n_kde_stability_plots = 100
33 n_heatmap_stability_plots = 100
34 n_simple_trajectory_plots = 100
35 n_double_trajectory_plots = 100
36 dpi = 100
37

38 [epoch_analysis_2D]
39 nb_epoch = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700
40 depth = 1, 2, 3

11 Appendix 85

11.2 Attachment B: Neural network activation functions

�5 �4 �3 �2 �1 1 2 3 4 5

�1

�0.75

�0.5

�0.25

0.25

0.5

0.75

1

tanh(z) = e
z�e

�z

ez+e�z

z

f(z)

tanh

�5 �4 �3 �2 �1 1 2 3 4 5

�5

�4

�3

�2

�1

1

2

3

4

5

l(z) = z

z

f(z)

linear

�5 �4 �3 �2 �1 1 2 3 4 5

0.25

0.5

0.75

1

�(z) = 1
1+e�z

z

f(z)

sigmoid

�5 �4 �3 �2 �1 1 2 3 4 5

1

2

3

4

5

l(z) = max(0, z)
z

f(z)

ReLU

�5 �4 �3 �2 �1 0 1 2 3 4 5

0

0.25

0.5

0.75

1

l(z) = max(0,min(1, 0.2 ⇤ z + 0.5))

z

f(z)

Hard sigmoid

�5 �4 �3 �2 �1 0 1 2 3 4 5

0.25

0.5

0.75

1

l(z) =

8
<

:
0, z < 0

1, z � 0

z

f(z)

Heaviside step function

11 Appendix 86

11.3 Attachment C: Loss functions

The loss functions defines the fitness of the prediction Ŷ on the true datapoints Y . A batch
of predictions of a the recurrent net used in section 5 is a three-dimensional tensor of shape
Y 2 RS⇥N⇥2 and Ŷ 2 RS⇥N⇥2 respectively. With S the number of samples and N the length of
the sequences. The two rows in the third dimension represent the x and y-coordinates of one
trajectory. Consequently, a sample trajectory is a two-dimensional matrix:

Yi =

0

BBBBBBB@

x1
i

y1
i

x2
i

y2
i

...
...

xN�1
i

yN�1
i

xN
i

yN
i

1

CCCCCCCA

2 RN⇥2. Eq. 11-1

Mean Squared Displacement

LMSD(Ŷ , Y) :=
1

S

SX

i=1

NX

k=1

⇣
xki � x̂ki

⌘2
+
⇣
yki � ŷki

⌘2
Eq. 11-2

Mean Squared Error

LMSE(Ŷ , Y) :=
1

S

1

N

SX

i=1

NX

k=1

⇣
xki � x̂ki

⌘2
+
⇣
yki � ŷki

⌘2
Eq. 11-3

Mean Final Displacement

LMFD(Ŷ , Y) :=
1

S

SX

i=1

q�
xN
i
� x̂N

i

�2
+
�
yN
i
� ŷN

i

�2 Eq. 11-4

Mean Displacement

LMD(Ŷ , Y) :=
1

S

SX

i=1

NX

k=1

q�
xk
i
� x̂k

i

�2
+
�
yk
i
� ŷk

i

�2 Eq. 11-5

11 Appendix 87

11.4 Attachment D: Dataset details

Dataset Number of trajectories Average trajectory length [m] vavg[
km

h
] Sampling rate [Hz] Data points

ETH 359 13.17 4.9 2.5 8888

Hotel 389 6.58 3.76 2.5 6538

ATC 8 434.00 2.97 2.5 9980

Vissim Case 1 1056 60.67 4.93 2.51 118168

Vissim Case 2 1056 61.68 4.94 2.51 120061

Vissim Case 3 1056 61.12 4.94 2.51 118999

Laser I 2385 157.89 40.71 2.52 83277

Laser II 646 104.20 35.69 2.52 17714

Laser III 1952 116.24 30.07 2.52 67968

Fig. 11-1: Dataset statistics

11.4.1 ETH Datasets

Vision-based pedestrian tracking performed at public spaces in Zürich. Published by Pellegrini
et al. [PEL09].

(i) ETH dataset (ii) Hotel dataset

Fig. 11-2: ETH dataset collection consists of the ETH dataset and the Hotel dataset

1 Downsampled from originally 10 [Hz] to 2.5 [Hz]
2 Downsampled from originally 25 [Hz] to 2.5 [Hz]

11 Appendix 88

11.4.2 Vissim Datasets

Generated with Vissim that makes use of a social forces model [PTV17].

(i) Vissim Dataset Case 1 (ii) Vissim Dataset Case 2

(iii) Vissim Dataset Case 3

Fig. 11-3: Vissim Datasets

11 Appendix 89

11.4.3 Laser Datasets

Captured at intersections in Aachen. The majority of the tracked objects are vehicles.

(i) Laser I: Intersection Brüsseler Ring -
Lohmühlenstraße

(ii) Laser III:
Intersection

Alt-Haarener Straße
- Bogenstraße

(iii) Laser II: Intersection Bleibergerstraße - Heerlener Straße

Fig. 11-4: Laser datasets

11 Appendix 90

11.4.4 Aldenhoven Testing Center Dataset

Pedestrian movements at an intersection at the ATC. Captured with a high-precision GPS re-
ceiver that was carried by pedestrians.

Fig. 11-5: Aldenhoven Testing Center dataset

	Introduction
	Content and Structure

	State of the Art
	Prediction of Pedestrian Trajectories
	Prediction of Pedestrian Trajectories from Driver's Perspective
	Related models for Sequence Prediction
	Continuously Learning Neural Networks

	Artificial Neural Networks
	Background
	Feedforward Neural Networks
	Training and Backpropagation
	Dropout

	Recurrent Neural Networks
	Simple Recurrent Neural Networks
	Training of Recurrent Networks
	Long Short Term Memory Networks
	Bidirectional Recurrent Neural Networks
	Stacked Recurrent Neural Networks

	Prediction Network Architectures
	Sequence to Sequence Model
	Simple Sequence to Sequence Model
	Sequence to Sequence Model with Peek
	Attention Sequence to Sequence Model

	Research Objective and Approach
	Analysis of Existing Prediction Models
	Research Questions
	Approach
	Definition of Performance Evaluation

	Model Design and Implementation
	General Code Setup
	Datasets
	Data Pre-processing
	Model Details
	LSTM Configuration Details
	Training & Evaluation
	Hyperparameter & Hyperparameter Tuning
	Parameter Analysis
	Stability Analysis
	Continuous Learning

	Results and Evaluation
	Initial Hyperparameter Parameter Search
	Architecture Comparison
	Optimiser Comparison
	Comparison with Baseline Models
	Parameter Dependencies
	Prediction Stability
	Incorrect Predictions
	Continuous Learning
	Case ``Construction Work''
	Case ``Blocked Road''
	Evaluation Continuous Learning

	Model Evaluation Latency

	Conclusion and Outlook
	Literature
	List of Abbreviations
	List of Symbols
	Appendix
	Attachment A: Default Configuration File
	Attachment B: Neural network activation functions
	Attachment C: Loss functions
	Attachment D: Dataset details
	ETH Datasets
	Vissim Datasets
	Laser Datasets
	Aldenhoven Testing Center Dataset

