
Project Report: Convolutional Neural Network and Recurrent Neural

Network for Earthquake Detection and Localization

Till Beemelmanns

6. December 2018

1 Introduction

In order to improve seismic hazard assessment recent publications proposed machine learning and deep learning
methods to detect and locate earthquakes. These approached are based on publicly available dataset that
contain continuous waveform measurements and corresponding earthquake events. The most recent and most
popular paper that applied deep learning to this kind of data was published by Perol et al. [4]. The researchers
use Convolutional Neural Networks (CNNs) on waveform data to detect earthquakes and location. In the
course of this project the results in [4] using a CNN architecture have to be validated and in addition the
prediction accuracy should be further improved. The application of Recurrent Neural Networks (RNN) using
Long-Short Term Memory Cells (LSTM) [2] were applied to this time-series classification problem, but proved
to be ineffective. Finally, a fused architecture consisting of CNN layers and bi-directional LSTM cells was
applied. A benchmark of both architectures on the same training and test datasets is performed.

2 Dataset and Approach

The 70 GB dataset [4] contains continuous waveforms and earthquake events and was captured from February
2014 to November 2016 in Oklahoma (USA). The overall dataset contains 2709 earthquake events that were
captured by two seismic stations. In Appendix B some of the data samples are visualized. The test dataset is
defined as the waveforms and events that were captured during July 2014. It contains 209 events. The training
dataset consists of all other measurements.

The general approach of the earthquake localization is to discretize the domain in clusters and perform the
localization on this simplified domain. As shown in Appendix A, the events are clustered on basis of their
latitude and longitude. The k-Means clustering algorithms was used to determine 6 clusters. In order to train
the neural network, the continuous waveform was divided in windows of 10s length with sample rate of 10Hz
on 3 channels. Hereby, event windows contain an earthquake event and noise windows do not contain any
event, just noise. Further, for every event window the correct cluster (label) is known. That leads to a classical
classification problem. Given a random 10s window of seismic measurements, we want to find out in which
cluster that event happened.

3 Evaluation of ConNetQuake

One of the goals of this project is to verify the results of Perol et al. [4]. Hence, the training of the ConvNetQuake
network [3] has been conducted on a new preprocessed training dataset. The original ConvNetQuake consists of
8 plain convolutional layers with kernel size of 3x3 and a stride of 2x2. Pooling layers have not been applied to
this network. Figures 8a and 8b indicate that the neural network converges approximately after 20.000 training
steps. In this last state of the training, the model was evaluated on the test dataset (see Listing G) obtaining
a location accuracy of 75.3 % using 6 location clusters. This corresponds approximately to the accuracy of
74.6 % reported in [4]. The slight difference might occur due to the selection of the test dataset and at which
training epoch the model was stopped. Further, the detection of an earthquake could be detected with almost
100% accuracy, same accuracy as reported in [4].

4 Evaluation of LSTM-CNN

During the development of this project new architectures were added to the existing ConvNetQuake framework.
A raw LSTM architecture and a combination of Long-Short-Term Memory Cells and Convolutional Neural
Networks were deployed in the hope that the LSTM could further improve the prediction quality. In several

1

research papers, LSTMs archived state of the art performance in sequence processing tasks. Figure 10 shows
that the existing ConvNetQuake class was inherited in order to implement the new architectures.

90 110 130 150 170 190 210
60

70

80

90

100

Training Epochs

T
es

t
L

o
ca

ti
on

A
cc

u
ra

cy
%

Test Accuracy

Figure 1: Test Location Accuracy over
Training Epochs using the CNN-LSTM
model.

In the first attempt, a raw stacked bidirectional LSTM model
was deployed on this setting. But it turned out that the conver-
gence of this models was very slow and even after long training
the prediction quality was bad. A possible explanation for this
behavior can be found in the lengths of the training windows.
Each window has a lengths of 10s which leads to a training ten-
sor sample of 1000 × 3 using a sampling frequency of 10 Hz on
3 channels. With this high number of time steps a raw LSTM
encounters the problem of vanishing gradients. The number of
time steps in this setting is simply to high in order to backprop-
agate the error gradient from the output layer to the weights. A
down sampling of the input sequence was applied which lead to
better but still not satisfactory results.

In the second attempt, the LSTM architecture was combined
with convolutional layers. The LSTM-CNN consists of two fea-
ture extraction layers as an the input of the neural network.
They have the same shape as in the original model. The output
of the convolutional layer was then feed into an array of 5 Bidi-
rectional LSTM Cells. In the final layer a fully connected classification layer was deployed. This architecture
is visualized by Figure 7.

After a simple hyper parameter search a good set of train parameters was obtained. As shown in Figure 1
and Listing G the model could obtain a maximal location accuracy of 82.9 % on the test dataset. This instance
was achieved using 130 training epochs and results of that model are show in Appendix E. The neural network
computes the probability over the different clusters given an unseen test input window and in most cases the
prediction was correct. Choosing the training epochs in range 110-170 leads in general to good results with an
approximate average of 80% location accuracy. Further training leads to overfitting of the model.

5 Conclusion & Answering of the Research Questions

• Can the results of Perol et al. [4] be verified ?
Yes, the same prediction quality as in the paper could be obtained.

• Has a RNN-LSTM a better performance than a CNN using continuous waveform data ? A
pure RNN-LSTM architecture could not perform better than a CNN architecture. The sequences length
of 1000 samples might be too long for recurrent neural networks. They encounter the problem of vanishing
gradients over time. Downsampling the input sequence helped only a little. However, a fused architecture
consisting of convolutional layers and stacked LSTM cells could improve the localization prediction from
74.6 % to 82.9%.

• Can a different dataset (e.g. Hi-Net [1]) be used for the same methodology ?
Yes. Requirements of the dataset are as following: We need a catalog file that contains event time, and
the estimated locations for each of the earthquakes. Further, we need continuous waveform measurements
of at least one seismic station that is close to those events. It is advisable to convert all the catalog files
and the continuous waveform dataset into the same format as in [3], because all preprocessing steps rely
on that format.

• How can we perform a prediction on a continuous spatial domain ?
Instead of clustering the spatial domain and performing a classification over the different clusters, we
could try to predict the coordinates directly. For this regression task, we should use a Mean Squared
Error as a loss function.

6 Outlook

• So far the classification was performed on a 2-dimensional plane. However, the depth of earthquakes also
plays an important role. One could perform the k-Means clustering of the earthquakes in 3 dimensions,
adding the depth along with longitude and latitude coordinates.

2

Appendix A Earthquakes and Seismic Stations

Figure 2: Two dimensional representation of the earthquakes and the clustering of the k-Means algorithm.
Each earthquake was assigned to one of the 6 clusters and the neural network predicts the probability over the
different clusters for each input sample. The two stars represent the two seismic stations that captured the
continuous waveform data. The clustering in this thesis is slightly modified since the clustering algorithm was
run again. Figure is taken without any modifications from [4].

Appendix B Training Dataset Samples

The following training dataset samples have been captured in July 2015. Each snippet is 10 seconds long and
the event is shifted by two seconds. These are positive examples, but the training-set also contains negative
examples without any event.

Figure 3: Positive Event - Waveform of Event 0 in Cluster 3

3

Figure 4: Waveform of Event 78 in Cluster 3

Figure 5: Waveform of Event 95 in Cluster 0

4

0 200 400 600 800 1000
time (samples)

0.00010

0.00015

am
pl

itu
de

window 0019, cluster_id: -1

0 200 400 600 800 1000
time (samples)

0.00035

0.00040

am
pl

itu
de

0 200 400 600 800 1000
time (samples)

0.0026

0.0028

am
pl

itu
de

Figure 6: Waveform of a negative time period of 1000s which corresponds to Cluster -1 (no cluster)

5

Appendix C Network Architecture

1000 samples on 3 channels

Input waveform

Convolutional Layer

Convolutional Layer

Convolutional Layer

LSTM Stack

...

LSTM Stack

...

...

Softmax Classi!cation

6 Clusters

Figure 7: The network consists of Convolutional Layers and LSTM Layers. All layers are fused and trained
together. 5 LSTM stack layers were deployed. The architecture and figure are inspired by a Tensorflow tutorial
[5].

6

Appendix D Training of the Neural Networks

(a) ConvNetQuake: Evolution of the Earthquake Detection Accuracy over Training Steps

(b) ConvNetQuake: Evolution of the Localization Accuracy over Training Steps

(c) CNN-LSTM: Evolution of the earthquake detection accuracy over training steps

(d) CNN-LSTM: Evolution of the earthquake localization accuracy over training steps

7

Appendix E Prediction Samples

−97.55−97.50−97.45−97.40−97.35−97.30−97.25−97.20
Longitude

35.75

35.80

35.85

35.90

35.95

36.00

La
tit
ud
e

Predicted Cluster 2, True Cluster 2
True Position

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05
Probability

(a) Correct Classification of Cluster 2

−97.55−97.50−97.45−97.40−97.35−97.30−97.25−97.20
Longitude

35.75

35.80

35.85

35.90

35.95

36.00

La
tit
ud
e

Predicted Cluster 1, True Cluster 5
True Position

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64
Probability

(b) False Classification

−97.55−97.50−97.45−97.40−97.35−97.30−97.25−97.20
Longitude

35.75

35.80

35.85

35.90

35.95

36.00

La
tit
ud
e

Predicted Cluster 5, True Cluster 5
True Position

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Probability

(c) Correct Classification of Cluster 5

−97.55−97.50−97.45−97.40−97.35−97.30−97.25−97.20
Longitude

35.75

35.80

35.85

35.90

35.95

36.00

La
tit
ud
e

Predicted Cluster 2, True Cluster 2
True Position

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56
Probability

(d) Correct Classification of Cluster 2

−97.55−97.50−97.45−97.40−97.35−97.30−97.25−97.20
Longitude

35.75

35.80

35.85

35.90

35.95

36.00

La
tit
ud
e

Predicted Cluster 4, True Cluster 4
True Position

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05
Probability

(e) Correct Classification of Cluster 4

−97.55−97.50−97.45−97.40−97.35−97.30−97.25−97.20
Longitude

35.75

35.80

35.85

35.90

35.95

36.00

La
tit
ud
e

Predicted Cluster 5, True Cluster 1
True Position

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42
Probability

(f) False Classification

Figure 9: Different test samples visualized as probabilistic map on the domain of interest. Some of the samples
are correctly predicted, some samples are misclassified. The plot were generated using the code of [3] and using
the proposed CNN-LSTM architecture.

8

Appendix F Class Diagram

Added Classes
Existing Classes

Figure 10: Class Diagram of the Model inheritance structure. The new model classes Maxpooling LSTM,
CNN LSTM and LSTM are child classes of the original ConvNetQuake class. The new classes deploy class
functions that overwrite the setup prediction function in order to build the neural network for each specific
architecture.

9

Appendix G Evaluation and Training Logs from the Cluster

The evaluation of 243000 windows à 10 seconds each took on the compute cluster about 3 minutes and 20
seconds. The raw test output of this computation can be found in Listing ?? and furthermore this function
exports a csv file which contains the classified clusters. The test set was constant for all test cases and it
consists of the continuous waveform of the month July 2014.

Listing 1: ConvNetQuake Evaluation Log File

python bin / p r e d i c t f r om t f r e c o r d s . py −−datase t data/ t f r e c o r d s c on t i n u ou s d e t e c t i o n / July2014 −−
ch e ckpo in t d i r models / convnetquake −−n c l u s t e r s 6 −−max windows 2678400 −−output output /
j u l y d e t e c t i o n s

GSOK029 7−2014. t f r e c o r d s
Catalog c rea ted to s t o r e events output / j u l y d e t e c t i o n s / c a t a l o g d e t e c t i o n . csv
Loaded model at s tep 32000 from snapshot models / convnetquake/model−32000.
Pred i c t i ng us ing model at s tep 32000
proces sed 1000 windows
proces sed 2000 windows
. . .
. . .
. . .
p roce s s ed 242000 windows
proces sed 243000 windows
Evaluat ion completed (1 epochs) .
j o i n i n g data threads
Pred i c t i on took 3 .0 min 19.4743001461 seconds

Listing 2: ConvNetQuake Evaluation Log File

Loaded model at s tep 19500 from snapshot . . / output / t r a i n i n g t i l l /ConvNetQuake/model−19500.
Evaluat ing at s tep 19500
128 | l o s s = 1.10170 | det . acc . = 100.0% | l o c . acc . = 76.6%
256 | l o s s = 0.99092 | det . acc . = 100.0% | l o c . acc . = 79.7%
. . .
. . .
. . .
5120 | l o s s = 1.08875 | det . acc . = 100.0% | l o c . acc . = 73.4%
5248 | l o s s = 1.06865 | det . acc . = 100.0% | l o c . acc . = 75.0%
Evaluat ion completed (50 epochs) .
5248 windows seen
Average | l o s s = 1.07361 | det . acc . = 100.0% | l o c . acc . = 75.3%

Listing 3: CNN LSTM Training Log File

USING CNN LSTM MODEL
I n i t i a l i z i n g a l l v a r i a b l e s .
S t a r t i ng data threads coo rd ina to r .
S t a r t i ng opt imiza t i on .
Step 10 | 13 s (1312ms) | l o s s = 1.4201 | det . acc . = 64.1% | l o c . acc . = 54.7%
Step 20 | 24 s (1211ms) | l o s s = 1.4103 | det . acc . = 64.1% | l o c . acc . = 55.5%
Step 30 | 35 s (1173ms) | l o s s = 1.4068 | det . acc . = 69.5% | l o c . acc . = 51.6%
Step 40 | 46 s (1158ms) | l o s s = 1.3325 | det . acc . = 68.8% | l o c . acc . = 56.2%
. . .
. . .
. . .
Step 7450 | 7762 s (1042ms) | l o s s = 0.4594 | det . acc . = 99.2% | l o c . acc . = 87.5%
Step 7460 | 7773 s (1042ms) | l o s s = 0.5494 | det . acc . = 98.4% | l o c . acc . = 84.4%
Step 7470 | 7784 s (1042ms) | l o s s = 0.5546 | det . acc . = 99.2% | l o c . acc . = 81.2%
Step 7480 | 7794 s (1042ms) | l o s s = 0.5514 | det . acc . = 100.0% | l o c . acc . = 83.6%
Train ing completed at s tep 7484 .
Shutt ing down data threads .
Waiting f o r a l l threads .
Optimizat ion done .

Listing 4: CNN LSTM Evaluation Log File

Loaded model at s tep 5120 from snapshot . . / output/ t r a i n i n g t i l l /CNN LSTM 130 00 64/model−5120.
Evaluat ing at s tep 5120
128 | l o s s = 0.76979 | det . acc . = 100.0% | l o c . acc . = 83.6%
256 | l o s s = 0.75857 | det . acc . = 100.0% | l o c . acc . = 85.9%
384 | l o s s = 0.88161 | det . acc . = 100.0% | l o c . acc . = 80.5%
512 | l o s s = 0.85831 | det . acc . = 100.0% | l o c . acc . = 80.5%
. . .
. . .
. . .

10

10112 | l o s s = 0.75992 | det . acc . = 100.0% | l o c . acc . = 85.2%
10240 | l o s s = 0.79140 | det . acc . = 100.0% | l o c . acc . = 85.2%
10368 | l o s s = 0.86955 | det . acc . = 100.0% | l o c . acc . = 79.7%
10496 | l o s s = 0.84655 | det . acc . = 100.0% | l o c . acc . = 82.0%
Evaluat ion completed (100 epochs) .
10496 windows seen
Average | l o s s = 0.81475 | det . acc . = 100.0% | l o c . acc . = 82.9%

11

References

[1] National Research Institute for Earth Science and Disaster Resilience. High-Sensitivity Seismograph Net-
work. http://www.hinet.bosai.go.jp/, 2018. [Online; accessed 14-Oktober-2018].

[2] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

[3] Thibaut Perol, Michaël Gharbi, and Marine Denolle. ConvNetQuake. https://github.com/tperol/

ConvNetQuake, 2016. [Online; accessed 29-Oktober-2018].

[4] Thibaut Perol, Michaël Gharbi, and Marine Denolle. Convolutional neural network for earthquake detection
and location. Science Advances, 4(2), 2018.

[5] Tensorflow. Recurrent Neural Networks for Drawing Classification. https://www.tensorflow.org/

tutorials/sequences/recurrent_quickdraw, 2018. [Online; accessed 22-November-2018].

12

http://www.hinet.bosai.go.jp/
https://github.com/tperol/ConvNetQuake
https://github.com/tperol/ConvNetQuake
https://www.tensorflow.org/tutorials/sequences/recurrent_quickdraw
https://www.tensorflow.org/tutorials/sequences/recurrent_quickdraw

	Introduction
	Dataset and Approach
	Evaluation of ConNetQuake
	Evaluation of LSTM-CNN
	Conclusion & Answering of the Research Questions
	Outlook
	Appendix Earthquakes and Seismic Stations
	Appendix Training Dataset Samples
	Appendix Network Architecture
	Appendix Training of the Neural Networks
	Appendix Prediction Samples
	Appendix Class Diagram
	Appendix Evaluation and Training Logs from the Cluster

