
Website Fingerprinting and Traffic Labeling with Deep Neural
Networks

Adam Weckle1 and Till Beemelmanns2

Abstract— Our paper proposes that deep learning
methods can be applied to differentiating between dif-
ferent types of traffic and file transactions. We utilize
both a CNN and a Bidirectional-LSTM neural network
architecture to test this hypothesis. We also make a
comparison with a Bidirectional LSTM to a CNN with
website fingerprinting.

I. INTRODUCTION

In our project we will investigate the capabilities
of Deep Neural Networks for Website Fingerprinting
and traffic labeling based on The Onion Router (Tor)
network traffic. Users of the Tor network expect total
anonymity while they are visiting websites and using
online services. However, various researchers have
proven that the network traffic that is exchanged
between the user and the network can be used for
Website Fingerprinting (WF) attacks. A possible
eavesdropper between host and Tor entry node could
capture encrypted routing information and the specific
traffic pattern. The timing and the sizes of network
packages can create a unique fingerprint for a specific
website or set of websites. A possible attacker could
use this pattern in order to determine which website
Tor users are accessing. This method of attack was
presented in various studies [1]–[5]. Based on these
works, we want to improve the attack mechanism by
using a different deep learning model and by predicting
what type of file transaction the user is performing
on these websites. This result is predicted to be more
widely applicable to open-world applications.

1A. Weckle is with the Department of Engineering
and Computer Science, Michigan State University, USA
wecklead@msu.edu

2T. Beemelmanns is with the Department of Computa-
tional Engineering Science, RWTH Aachen University, Germany
till.beemelmanns@rwth-aachen.de

II. PROJECT MOTIVATION

A. OUR APPROACH

Our proposed approach to this problem is to utilize
the ideas demonstrated by Rimmer et al [6], and use
both their tested models and a Bidirectional LSTM to
analyze network traffic. However, rather than trying to
separate data into the specific websites they could be
from, we will simply try to determine what type of file
transaction the user may be involved in at the moment.
We expect this to have more significant open-world
applications since it doesn’t rely as much on getting
previous traffic traces from a chosen website. In the
absence of an easy way to collect this data, it was
all done manually with a small dataset and may not
actually be representative of an open-world scenario.

Fig. 1. The user utilizes a Tor network to access a website. The
listener observes the encrypted messages between the user and Tor
network, and uses Deep Learning to analyze it.

This supervised learning technique proposes a Bi-
directional network that takes traffic sequences as an in-
put and is trained to map the input to the desired output
labels. Since [6] has shown that it is possible to process
encrypted traffic streams with CNNs, although CNNs
were designed to process image data, we belief that it is
possible to train and evaluate this data on an advanced
BI-LSTM architecture. This enables us to repeat this
process to discriminate between different types of file
transactions, including: compressed file upload, video

1



streaming, standard browsing/searching and messaging.
The distinction between these transaction types can be
important for realizing if a website guess is accurate
or for open-world scenarios where a guess is less plau-
sible. Additional motivations can include tracking of
illegal uploads/downloads and criminal investigations.

III. BACKGROUND SURVEY

A. MACHINE LEARNING APPROACHES

Several studies have shown that Website
Fingerprinting attacks on Tor are feasible with various
Machine Learning and Deep Learning algorithms.

The first approaches to analyzing Tor network traffic
were data mining algorithms presented by Herrmann et
al [7]. The authors of this publication have shown that
their model was able to determine which websites were
accessed by the user. They deployed a Naive Bayes
classifier along with a word frequency feature. This
approach achieved an average accuracy of 3%.

A more sophisticated approach was proposed by
Panchenko et al. [5]. Additional handcrafted traffic
features such as bytes/packets transmitted, along with
the use of Support Vector Machines. This approach
resulted in an accuracy of about 50%.

Substantial improvements on this classification
problem have been archived by Cai et al [8].
These researchers proposed a SVM with a custom
handcrafted kernel function based on the Damerau-
Levenshtein distance which measures additional drops
and retransmissions of TCP packets. Cai et al. claimed
that they reached an accuracy of 86% fingerprinting
Tor traffic and an accuracy of more than 91% for
SSH tunnel traffic. However, their approach was later
criticized in [9] for using a strict closed world and
unrealistic ideal conditions and using small datasets.
Further important factors such as multi-tab browsing,
internet connection and page load interruptions were
not considered.

The following three works were recently published
and use commonly generic classifiers in combination
with handcrafted feature extractors.

Wang-kNN [10] is an attack with 90-95% accuracy,
based on the k-Nearest Neighbors classifier. It has
nearly 4000 traffic features, a majority of which are
from packet lengths.

CUMUL [4] is an attack with 90-93% accuracy,
based on an SVM with a Radial Basis Function kernel.

It has 104 features derived from packet lengths and
incoming packet patterns.

k-Fingerprinting [3] is an attack with similar accu-
racy to CUMUL, based on Random Forests. It has
175 features, including timing features like packets per
second.

B. DEEP LEARNING APPROACHES

With the recent boom of Deep Learning (DL)
algorithms in the past 5 years, the traditional approach
(cf. [3]–[5], [7], [9], [10]) using manual feature
engineering along with generic, partially customized
classifiers has become less important. Deep learning
algorithms such as Feed Forward Neural Networks
(FFNs), Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) are designed to
jointly train feature extraction and classification, which
can lead to a more powerful overall design. Hence,
profound manual engineering of features is in most
cases not necessary any more, but dataset size, dataset
quality, model training and hyperparameter tuning are
the new challenges for a successful DL approach.

There is some previous research that applied DL to
WF or similar problems [1], [2], [6]. We will now
introduce and discuss these publications.

A similar problem was tackled by Wang [2]. The re-
searcher was able to classify protocols and application
traffic using a Stacked AutoEncoder (SAE), essentially
equivalent to a multilayer perceptron. This is partic-
ularly interesting for the application of discovering
whether the user is uploading or downloading a specific
type of data to a website. The author of this publication
claimed that they were able to determine the traffic
of e.g. Gmail, BitTorrent or Apple’s iTune. Hence,
it seems possible to use DL for traffic identification.
However, their data analysis was not performed on
encrypted data streams and they used a relatively simple
neural network architecture.

Abe and Goto [1] improved the model of [2] by
developing a Stacked Denoising Autoencoder (SDAE).
The SDAE employs a denoising regularization tech-
nique that improved the model’s prediction robustness.
Further, the researchers used a bigger dataset compared
to the previous approach. As in the previous paper,
the researcher used a comparable small neural network
and they did not investigate upstream and downstream
behavior.

Rimmer et. al. [6] applied the approaches of
Stacked Denoising Autoencoder (SDAE), CNN, and

2



LSTM to the problem of website fingerprinting and
found they matched or surpassed the most recent
machine learning approaches. In particular, they use
large scale datasets with varying sizes and captured
under dynamic changes of web content over time.
They have proved that the size of the datasets is
essential for the net’s performance. It was stated
that SDAE, CNN and LSTM have a comparable
performance, but each of them have strengths and
weaknesses regarding WF. While CNN is the fasted
network it has a higher risk of overfitting. LSTMs
have the better generalization capabilities but they
are constrained to shorter traffic sequences due to
backpropagation problems. It was not investigated
whether it is possible to used a bi-directional LSTM
model consisting of bi-directional RNN layer. We
belief that this could improve the model’s performance
as TCP traffic has a highly complex structure where
packages depend highly on past and future messages.
As in the previous papers, the user’s behavior on the
various websites was not investigated. We will use
this publication as the main basis for our research. In
particular we are going to use the published benchmark
datasets and the preprocessing methods as posted on
https://github.com/DistriNet/DLWF.

IV. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are a class of
nature-inspired computational systems. An ANN con-
sist of a large collection of artificial neurons that are
connected with each other through weighted directed
edges that imitate the synapses and neurons of a bio-
logical brain [11]. The weights of the edges represent
the strength of the synapses between the neurons [11].
The computational complexity and the memory storage
of a single neuron is limited. However, the connection
of hundred thousand of artificial neurons arranged in
a network compound can achieve remarkable artificial
intelligence like performance.

Figure 2 depicts such an artificial neuron.
Training of a big network is done by

backpropagation and a stochastic gradient decent
algorithm. A loss function L(ŷ, y) defines net’s error
of the current prediction and this error is consequently
backpropagated to every single weight of the ANN. On
this basis, an optimization gradient decent algorithm
is used in order to manipulate the weights in such a
way that error of the ANN with respect to the error
function is minimized.

x2 wj2 Σ fj

Activation
function

νj

Outputx1 wj1

x3 wj3

Weights

Bias
bj

Inputs

Fig. 2. The output of the artificial neuron j is a weighted sum
of its inputs which is put through an activation function. Figure
adapted from [12].

There exists a variety of possibilities to arrange and
structure artificial neurons and the information flow
between them. In this way it is possible to differentiate
between several types of ANNs. These types have
typically strong different properties and show their
best performance in a specialized task. For example,
Convolutional Neural Networks (CNNs) achieved state
of the art performance in computer visions tasks [13],
where Recurrent Neural Networks (RNNs) were able
to model time series data seen in natural language
processing [14]. In this thesis, both last mentioned
ANNs are being applied on the learning problem. In
the following, both types will be introduced briefly.

A. Convolutional Neural Networks

Convolutional Neural Networks are a special sub-
version of Feed Forward Neural Networks (FFNs).
That means that the neurons are ordered in vertical,
straight, forward layers where each unit of one layer
is connected to every node in the following layer. This
class of architecture uses special layers that compute
convolutions over the input tensor. That allows the net
to extract local features [6] from the input and create
out of those features a generic classifier. The reception
field is usually very small in comparison to the input
dimension but several stacked convolutional layers in
combination with non-linear activation functions can
lead to a very powerful image classifier. Pooling layers
between the convolutions allows the model to be per-
sistent against spatial shifts. The last layers of a CNN
classifier are usually fully connected dense hidden-
layers. These allow the model to combine different
extracted features into a classification using a softmax
output layer.

3

https://github.com/DistriNet/DLWF


B. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a subclass
of Deep Neural Networks (DNNs). RNNs have the
unique feature that edges transfer data from the
previous time step to the current state. These loops,
called recurrent edges, allow the information to
persist over time and enable complex, time-dependent
sequence modelling. In contrast to Feed Foward
Neural Networks (FFNs) RNNS do not require a fixed
dimensionality of the input and the output.

Figure 3 visualizes a very simple recurrent cell. xt
denotes the current input of that cell, ht is the hidden
state at time step t and ŷt represents the output of the
softmax classification function σ.

Fig. 3. Simple recurrent cell at time step t. Figure adapted from
Olah [15].

Bidirectional Recurrent Neural Networks (BRNNs)
extend a simple RNN by adding a second hidden layer
that has also a recurrent connection but to the future
time step. Such a cell is depicted in Figure 4. The
BRNN cell a time t receives information both from
the past time step t − 1 and the future one t + 1.
Hence, it is more likely that this architecture is able
to learn complex pattern that rely on bidirectional
temporal behavior such as in in Natural Language
Processing. We assume that this methodology could
also apply for TCP traffic. Payload Packets, ACKS
and re-transmissions have a strong complex temporal
behavior. Further, the timing of those packets play also
an important role if we consider Website Fingerprinting
over a Tor network.

Long Short Term Memory networks also
called LSTMs where introduced by Hochreiter &
Schmidhuber [17] in the late 90’s and are known for
their good performance in storing and remembering
information for a long period of time outperforming
standard RNN. In recent literature, LSTMs reached
state-of-the-art performance in various sequence

learning tasks. Up to date, the application of LSTMs
in speech processing and natural language translation
appears to be the most favoured research area [14]
[18]. Further applications are chatbots [19] and image
caption generation [20].

The mathematical representation of a usual LSTM
Cell is defined by the Equations 1 - 6.

it = σ(Wxixt +Whiht−1 +WciCt−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 +WcfCt−1 + bf ) (2)

C̃t = tanh(Wxcxt +Whcht−1 + bc) (3)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (4)

ot = σ(Wxoxt +Whoht−1 +WcoCt + bo) (5)

ht = ot ⊗ tanh(Ct). (6)

Exactly these equations are explicitly depicted in
Figure 5. This representation clearly visualizes how the
information flow between the different time instances
happens. ht is the current hidden state and Ct denotes
the cell state at time t. Thank to a multiplicative gates
approach, information are able to persists over a long
time without encountering the problem of vanishing
gradients. A single LSTM cell consists of the following
gates:

• Input gate it: Controls the input according to the
current input xt and ht−1. The resulting vector is
added to the cell state.

• Forget gate ft: Controls what information should
be deleted from the cell state based on the fused
information of input and hidden state.

• Output gate ot: Regulates what is stored in the
next cell state and future hidden state.

Overall, the LSTM is able to preserve gradient
information over long sequences thank to the
multiplicative gates approach. In this thesis we will
use a LSTM network in a bidirectional fashion. In this
case, all equations use both directions. That means
that the cell at time step t receives information both
from the past time step t− 1 and the future one t+ 1.
This kind of approach should have better performance
than just a recurrent approach especially for data
characteristics with bidirectional behavior.

V. DATASETS

A. DATASET FOR WEBSITE FINGERPRINTING

For the evaluation of the new network architecture
we used the proposed dataset in [6]. They are publicity

4



Fig. 4. Bidirectional recurrent neural network unfolded along time step t− 1, t and t+ 1. Figure adapted from Lipton et al. [16].

Neural Network Layer
Element-wise operation
Vector Transfer with fixed weight at 1
Concatenate
Copy

Fig. 5. Long Short Term Memory Cell with, explicit representation similar to Olah [15].

available on https://github.com/DistriNet/DLWF. The
authors of [6] collected traffic traces of the 1,200
most popular websites according to a popular website
ranking service. Hereby, each website was visited up
to 3,000 times. Parallel virtual machines were used
to gather this massive set of raw Tor traffic. All in
all 3.6 million page visits have been performed. In
this thesis only a small subset of this huge dataset
could be investigated, due to limited computational
resources. The closed world dataset CW100 contains
2,500 traffic trace of the top 100 websites. Each traffic
trace contains the first packages that were send in
order to request the data from the specific website and
the capturing finished 10 seconds after the website
was successfully loaded. Further, this dataset is called
closed world since it does not contain any noise traffic
from other browsing or streaming activities. In an
open world scenario it is more likely that a Tow user
browses on several websites simultaneously and on an
unpredictable range of different websites.

B. DATA COLLECTION FOR TRAFFIC LABELING

We endeavored to collect data of five different types:
file upload, file download, video streaming, chatroom
traffic, and general browsing. All communications
were carried out exclusively using Wi-Fi. To begin,

we installed Tor Browser and Wireshark on both a
Windows and a Mac operating system. We selected
arbitrary files we had prepared beforehand and
uploaded them to some standard file-sharing or storage
websites, including vimeo.com, github.com, and
onedrive.live.com. We also downloaded files from
these websites. Video stream was performed by just
watching random videos one after another. Chatroom
traffic was manually simulated by the authors of
this thesis. By doing so, random text messages and
pictures were exchanged. We tried to simulate a chat
conversation as realistic as possible. All of these use
cases were conducted by using the encrypted and
anonymized tor connection. The corresponding traffic
was captured using Wireshark and the traffic was
saved as .pcap files. We also tried to collect data
for the use case video chatting, but the Tor browser
prohibits any usage of cameras and microphones due
to security reasons. In comparison of the datasets
collected by [6], our dataset is much smaller and
has less page visits or samples per category. Further,
it is less strictly standardized as in [6], since the
dataset was collected manually and not with a bot-like
system. The used services were chosen upon personal
favorites. Nevertheless, we believe that enough and
high quality website traces could be captured so that
this dataset qualifies for representative results.

5

https://github.com/DistriNet/DLWF


In the following a overview over the different
categories and the used services is given. We used a
trace length of 250 to compute these values.

• Video Streaming: 1582 Traces
– Youtube: 9 Sessions
– Vimeo: 5 Sessions

• Upload: 1496 Traces
– Vimeo: 2 Sessions
– Github: 4 Sessions
– Onedrive: 1 Session

• Browsing: 671 Traces
– Google: 4 Sessions
– DuckDuckGo: 4 Sessions
– Bing: 3 Sessions
– Yahoo: 3 Sessions

• Messaging: 335 Traces
– Skype Online: 2 Sessions
– Slack: 2 Sessions
– Discord: 2 Sessions

The complete dataset measures about 1.3 Gigabytes.

VI. DATA PROCESSING

In our manual data collection process, we used
Wireshark which saves pcap and pcapng files
containing all raw tcp packages. In order to extract
the important information of the raw traffic data, we
used the same data pipeline as by Rimmer et al. [6].
This pipeline removes any payload from the data
since it is encrypted and does not have any value
for the classification task. As described in [6], the
extracted information are the time stamp, the direction
and the size of each TCP package. Furthermore, Tor
cells inside each TCP package is identified. The final
extracted information, which is called traffic trace, is
a sequence of negative ones and positive ones that
denote incoming and outgoing Tor cells. Hereby +1
denotes outgoing traffic from the client to the Tor
entry gate and −1 denotes incoming traffic. As in [6],
we did not fix the Tor entry guard node, since we
collected the data in several sessions using different
WiFis. Further, the Tor network changed frequently by
hopping servers. By doing so, we hope that our dataset
contains more general traffic patterns relying on the
different use cases and not on the specific service that
was used. That means, that the attack scenario should
work on any victim that has potentially different Tor

entry nodes.

VII. TRAINING

A. COMPUTE CLUSTER

The training of the Artificial Neural Network
requires the above mentioned large training data sets
and optimization method that change thousands of
weight simultaneously. Hence, a lot of computational
resources were used during the development of
this thesis. In particular, we used the HPCC GPU
Cluster so we were able to perform the training
and the evaluation of many different configurations
simultaneously. The used nodes are Nvidia K80 Kepler
Cards with each 256 Gigabytes of ram. We used the
slurm batch system to submit and manage our GPU
jobs. In order to use those resource, several bash
scripts needed to be defined.

The framework that we extended rely on the top
end deep learning library Keras [21] and we used
Tensorflow [22] as backend. A virtual environment was
set on the cluster in order to install all required Python
libraries. Other libraries such as CUDA, cuDNN and
OpenMPI could be loaded from the cluster.

Every architecture was trained with different
hyperparameters. The usage of the Hyperparameters is
defined in section VII-C.

B. Model

The neural network architectures were trained in a
supervised fashion. For each traffic trace we know the
corresponding label. Given the input sequences and its
labels we want to minimize the classification error of
the model

E = − 1

N

N∑
i

(pi log2 pi). (7)

This function is denoted by the loss function of the
model where pi is the probability for the predicted
class i with N different classes. The weights of the
neural networks were optimized in order to fit such
classification and by using the RMSprop optimizer.
The labels are encoded as an one-hot encoding scheme.

In order to simulate randomized traffic, we took
the whole dataset and randomly shuffled all samples.
Then 70% of the data were use to train the network.

6



15% of the data was used for validation and another
15% of the data was used to compute the final score
of the model.

C. HYPERPARAMETERS

Choosing the right hyper parameters is often based
on trial and error and leads to very high computational
costs. We tried to find the best parameters to fit the
model to the data. Table 6 below gives an overview
over the chosen parameters that we have used for the
training of the specific models. The number of training
epochs for the traffic labeling resulted from a sensitivity
analysis.

Hyperparameters CNN-LSTM BI-LSTM
Optimizer RMSProp RMSProp
learning rate 0.001 0.001
batch size 16 16
training epochs 5 20
layers 7 2
dropout 0.25 0.2
hidden units 32 16

1

Fig. 6. Overview of the used training hyperparameters

For the Website Finger printing problem we used a
trace length of 2500 using the CNN-LSTM model. For
th BI-LSTM model we used a trace length of 150. As
in [6], we could observe the problem that the LSTM is
constrained in backpropagation. By that means, it was
very difficult to train the BI-LSTM with much longer
traffic traces without having a very slow convergence
of the overall model.

VIII. RESULTS

A. WEBSITE FINGERPRINTING

Our BI-LSTM architecture was not significantly
more useful than the CNN architecture. It took more
time to run an epoch, even with fewer layers. It also was
less accurate even when the same number of epochs
was assumed. As shown in Figure 7 the performance of
LSTM and BI-LSTM are quite similar on the CW100

dataset. It is possible that some error occurred as a
result of insufficient data, but even with double the
epochs the LSTM architecture falls short.

Hyperparameters CNN-LSTM BI-LSTM
Optimizer RMSProp RMSProp
learning rate 0.001 0.001
batch size 16 16
training epochs 5 20
layers 7 2
dropout 0.25 0.2
hidden units 32 16

Architecture CNN LSTM BI-LSTM
CW100 96,26 % 94,02 % 94,28 %
Tra�c Labeling 86 % - 83,66 %

1

Fig. 7. Test accuracy over the different datasets. The accuracies
reflect the maximal achieved score using this specific model. The
values for LSTM and CNN on CW100 are taken from [6], but
we could also achieve almost identical results while rerunning the
mode.

B. TRAFFIC LABELING

Our results as shown in Figure 8 indicate that a
CNN continues to be the most accurate method of
deep learning on traffic traces for our purposes, also
maintaining the lowest loss. This is consistent with the
previous study done by [6]. In addition, our results
imply that we can estimate with over 80% accuracy
which type of traffic a user is engaging in. Considering
that we had a very small data set and only ran the
CNN for 10 epochs, this measure of accuracy is very
significant. Also consider the information in Figure
10. The precision for most transaction types is around
75%, and 95% in upload. The recall is excellent
on video streaming and uploading but rather bad on
messaging and browsing. The general reliability of
determining whether the user is uploading a file or the
user is viewing a video can thus be considered fairly
accurate. Some of the traffic traces were uploading
or streaming from the same websites. Therefore, this
result is independent of the website indicating patterns
presumably used in [6]. It is reasonable to predict that
this measure of accuracy would apply to open-world
scenarios as well. The traffic analysis is also predicted
to get significantly more difficult if a user were to
engage in accessing multiple websites at once.

7



Fig. 8. Traffic trace length vs. test accuracy

Fig. 9. Traffic trace length to test loss

IX. CONCLUSIONS

In this thesis, we analyzed a Tor network traffic
with different neural network architectures in order
to determine what type of file transaction the user is
doing and what website they may be browsing. We
extended Website Fingerprinting concepts from [6]
in order to label traffic traces. We could successfully

determine the type of traffic occurring using the same
CNN-LSTM approach they used. This type of analysis
allows a listener to estimate what type of transaction
is occurring with high precision even if the website
estimation has lower precision due to a realistic
open-world scenario.

8



Fig. 10. The classification accuracy over the four different traffic
classes.

For future work we propose the following ideas in
order to refine the model or the extend the general
approach.

• Use a bigger dataset and variety
• Add more use cases, E.g. distinguish between

downloading and video streaming
• Add traffic noise, E.g. video streaming and parallel

browsing

REFERENCES

[1] K. Abe and S. Goto, “Fingerprinting attack on tor anonymity
using deep learning,” Proceedings of the Asia-Pacific Ad-
vanced Network, vol. 42, pp. 15–20, 2016.

[2] Z. Wang, “The applications of deep learning on traffic iden-
tification,” BlackHat USA, 2015.

[3] J. Hayes and G. Danezis, “k-fingerprinting: A robust
scalable website fingerprinting technique,” in 25th
USENIX Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, 2016, pp. 1187–
1203. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/hayes

[4] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp,
K. Wehrle, and T. Engel, “Fingerprinting at internet scale,”
2015.

[5] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel,
“Website fingerprinting in onion routing based anonymization
networks,” in Proceedings of the 10th Annual ACM Workshop
on Privacy in the Electronic Society, ser. WPES ’11. New
York, NY, USA: ACM, 2011, pp. 103–114. [Online].
Available: http://doi.acm.org/10.1145/2046556.2046570

[6] V. Rimmer, D. Preuveneers, M. Juárez, T. van
Goethem, and W. Joosen, “Automated feature extraction
for website fingerprinting through deep learning,”
CoRR, vol. abs/1708.06376, 2017. [Online]. Available:
http://arxiv.org/abs/1708.06376

[7] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fin-
gerprinting: attacking popular privacy enhancing technologies
with the multinomial naı̈ve-bayes classifier,” in CCSW, 2009.

[8] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching
from a distance: Website fingerprinting attacks and defenses,”
in Proceedings of the 2012 ACM Conference on Computer
and Communications Security, ser. CCS ’12. New York,
NY, USA: ACM, 2012, pp. 605–616. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382260

[9] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt,
“A critical evaluation of website fingerprinting attacks,”
in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14.
New York, NY, USA: ACM, 2014, pp. 263–274. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660368

[10] T. Wang, X. Cai, R. Nithyanand, R. Johnson,
and I. Goldberg, “Effective attacks and provable
defenses for website fingerprinting,” in 23rd USENIX
Security Symposium (USENIX Security 14). San
Diego, CA: USENIX Association, 2014, pp. 143–
157. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/wang tao

[11] I. Basheer and M. Hajmeer, “Artificial neural networks: fun-
damentals, computing, design, and application,” Journal of
microbiological methods, vol. 43, no. 1, pp. 3–31, 2000.

[12] C. Gershenson, “Artificial neural networks for beginners,”
CoRR, vol. cs.NE/0308031, 2003. [Online]. Available:
http://arxiv.org/abs/cs.NE/0308031

[13] P. Sermanet and Y. LeCun, “Traffic sign recognition with
multi-scale convolutional networks,” in Neural Networks
(IJCNN), The 2011 International Joint Conference on. IEEE,
2011, pp. 2809–2813.

[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” CoRR, vol. abs/1409.3215,
2014. [Online]. Available: http://arxiv.org/abs/1409.3215

9

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
http://doi.acm.org/10.1145/2046556.2046570
http://arxiv.org/abs/1708.06376
http://doi.acm.org/10.1145/2382196.2382260
http://doi.acm.org/10.1145/2660267.2660368
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
http://arxiv.org/abs/cs.NE/0308031
http://arxiv.org/abs/1409.3215


[15] C. Olah, “Understanding lstm networks,”
http://colah.github.io/posts/2015-08-Understanding-LSTMs/,
2015, accessed 20-December-2016.

[16] Z. C. Lipton, “A critical review of recurrent neural networks
for sequence learning,” CoRR, vol. abs/1506.00019, 2015.
[Online]. Available: http://arxiv.org/abs/1506.00019

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8.

[18] A. Graves, “Generating sequences with recurrent neural
networks,” CoRR, vol. abs/1308.0850, 2013. [Online].
Available: http://arxiv.org/abs/1308.0850

[19] O. Vinyals and Q. V. Le, “A neural conversational model,”
CoRR, vol. abs/1506.05869, 2015. [Online]. Available:
http://arxiv.org/abs/1506.05869

[20] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show
and tell: A neural image caption generator,” CoRR, vol.
abs/1411.4555, 2014. [Online]. Available: http://arxiv.org/abs/
1411.4555

[21] F. Chollet et al., “Keras,” https://keras.io, 2015.
[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

APPENDIX

A. CNN-LSTM Architecture

The CNN-LSTM Architecture is shown in figure 11.
The convolutional layers have a kernel size of 5x5
and a stride of 1. Further, a ReLu activation function
was used. A dropout of 0.25 was applied on the first
convolutional layer. The Max-Pooling layers used a
pool size of 4x4. The LSTM layer had a unit size
of 128. Finally the softmax classification layer had a
output size of 100 for the fingerprinting classification
and 4 for the traffic labeling scenario. All in all the
architecture consists of 7 layers. All weights of these
layers a trained together in a fused fashion.

10

http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1506.05869
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1411.4555
https://keras.io
https://www.tensorflow.org/


B. Bi-LSTM-Architecture

The Bi-Directional LSTM Architecture is show in
Figure 12. It consists of two LSTM Layers; each of
them has a bidirectional architecture and they both
have 64 nodes. A hard sigmoid activation function
inside these cells was deployed for a higher com-
putational efficiency. Further both LSTM cell have a
dropout coupled layer with a dropout probability of
p = 0.2. The last layer is a softmax classification layer
and it has according to the classification problem 100
output nodes, respectively 4 output nodes.

Trace on 1 Channel
 

Input Trace

Dropout Layer

Convolutional Layer

Max-Pooling

LSTM Layer

Softmax Classi�cation

Classes

Convolutional Layer

Max-Pooling

Fig. 11. The CNN-LSTM Architecture depicted as a stack of
layers.11



Trace on 1 Channel
 

Input Trace

Dropout Layer

Bi-Directional LSTM Layer

Softmax Classi�cation

Classes

Dropout Layer

Bi-Directional LSTM Layer

Fig. 12. The CNN-LSTM Architecture depicted as a stack of
layers. 12


	INTRODUCTION
	PROJECT MOTIVATION
	OUR APPROACH

	BACKGROUND SURVEY
	MACHINE LEARNING APPROACHES
	DEEP LEARNING APPROACHES

	ARTIFICIAL NEURAL NETWORKS
	Convolutional Neural Networks
	Recurrent Neural Networks

	DATASETS
	DATASET FOR WEBSITE FINGERPRINTING
	DATA COLLECTION FOR TRAFFIC LABELING

	Data Processing
	TRAINING
	COMPUTE CLUSTER
	Model
	HYPERPARAMETERS

	RESULTS
	WEBSITE FINGERPRINTING
	TRAFFIC LABELING

	CONCLUSIONS
	References
	CNN-LSTM Architecture
	Bi-LSTM-Architecture


