RWTH Aachen University
Faculty of Mechanical Engineering

Institute for Automotive Engineering
Univ.-Prof. Dr.-Ing. Lutz Eckstein

Seminar Thesis

Surrounding Object Trajectory Prediction with Recurrent Neural Networks

submitted by:

Till Beemelmanns, matriculation number: 32 06 02

supervised by:
Julian Bock, M.Sc.

Aachen, 14 December 2017

Contents and results of this thesis are for internal use only. RWTH Aachen University is holder of all copyrights.
Further distribution to a third party, either partly or entirely, is to be approved by the supervising institute.

Contents 3

Contents
1 Introduction e e 5
1.1 Contentand Structure 5
2 Stateofthe Art 6
2.1 Prediction of Surround Object Trajectories 6
2.2 Related models for Sequence Prediction 7
3 Artificial Neural Networks 8
3.1 Background 8
3.2 Feedforward Neural Networks 9
3.3 Recurrent Neural Networks, 10
3.4 Long Short Term Memory Networks 10
3.5 Prediction Network Architecture o 11
3.6 Sequenceto SequenceModel 13
4 Approach and Performance Evaluation 15
4.1 Approach 15
4.2 Definition of Performance Evaluation 15
5 ModelDesign 17
5.1 Dataset e 17
5.2 Data Pre-processing e 17
5.3 Model Details e 19
5.4 Training & Evaluation 20
55 Learning Strategies 20
5.6 Stability Analysis 21
6 Resultsand Evaluation 22
6.1 Initial Hyperparameter Parameter Search 22
6.2 Fine Tuning Results 22
6.3 Prediction Stability 26
7 Conclusionand Outlook e 28
8 Literature e e 29

Contents 4

9 AppendiX e 33
9.1 Attachment B: Neural network activation functions 33
9.2 AttachmentC:Lossfunctions 34
9.3 Attachment D: Datasetdetails 35

9.3.1 Dataset Visualisation 35

1 Introduction S

1 Introduction

For automated driving functions, the prediction of surrounding objects in dynamically changing
scenarios is particular relevant. ADAS constantly perform risk assessments of the current
situation in order to drive safely and avoid collisions [KAN17]. Further, the future position
and movement of agents enables the possibility of an energy optimal driving strategy. Hence,
such a driving system needs a robust module that is able to anticipate what happens in its
direct environment and react to this situation accordingly. However, the prediction of objects
movement pattern is a difficult task. Road users could be classified as cars, pedestrians,
cyclists or trucks. All of these objects have different movement characteristics and the individual
behavior depends on various influencing factors that can not be determined a priori [KIM17].

Since information storage and transfer has become more cheaper and faster. The vast in-
creasing amount of data which is generated is more and more used for big data analytics.
Parallel to this development, GPU performance has exponentially increased in the last years
enabling large sized artificial neural network computations [MUJ16]. Thus modern data-driven
approaches in the automotive software became feasible. Test drives with vehicles that capture
information about object’s positions, movement dynamics and other specific data of road users
gathered over a long period of time could enable predictions of future situations with the help of
machine learning algorithms. One of the main advantages of these deep learning strategies is
the fact that it is not necessary to model each handcrafted specific situation, but rather let the
model learn to respond appropriately.

Therefore, there exists the need to develop a framework that is able to predict surrounding
object movements at various traffic scenarios with the help of a large scaled driving dataset
and predictive machine learning algorithms. Consequently, in this thesis the prediction of future
trajectories of road users with the help of machine learning will be investigated.

11 Content and Structure

This thesis is subdivided into six parts. Section 2 gives a brief summary about different classes
of prediction models that deal with movement anticipation and sequence learning strategies.
A state of the art review about Artificial Neural Networks can be found in section 3. Section 4
gives the research objective and the approach of this work. Model design and implementation
details of the machine learning methodology are presented in section 5. The model prediction
quality is discussed and compared with other models in section 6. Finally, section 7 summaries
this work and gives an outlook for future research.

2 State of the Art 6

2 State of the Art

In the following chapter, a brief review about existing techniques for the prediction of surround
objects, followed by a presentation and discussion of machine learning techniques for sequence
prediction tasks. Section 2.1 deals with different general approaches for road user motion
modelling. In the following section 2.2, different approaches that are not directly intended to
predict object movements, but which are capable to model sequential predictions with machine
learning algorithms in a different context, are discussed.

2.1 Prediction of Surround Object Trajectories

Since automated driving robots and advanced driver assistance systems (ADAS) will play an
increasingly important role in our daily lives, anticipating surrounding agent’s future movements
is important to improve road safety and trajectory planning. Hereby, the road users can be clas-
sified as vehicles, cyclists and pedestrians which have all different movement characteristics.
Furthermore, the movement behaviour of the agents which are controlled by humans are often
uncertain and they depend from many individual influencing factors. Thus, it is a challenging
task to design a single model that is able to forecast future movements of these diverse agents.
In the following, an overview of literature that deals with the prediction of surround objects is
given.

A basic path anticipation approach was presented by Ammoun et al. [AMMO09]. The prediction
model is based on a simple linear Kalman filter which uses the acceleration and velocity of the
tracked surround object in order to estimate it’s future state. Furthermore, the model considers
sensor errors in the measurement with the effect that the final prediction is a series of uncer-
tainty ellipses. On this basis a real time collision risk assessment between vehicles could be
implemented.

Kang et al. [KAN17] proposed in 2017 a object vehicle path’s prediction algorithm. The algo-
rithm is based on an polynomial extrapolation of the object’s velocity and position fused together
with a movement model that also considers the current motion of the observing vehicle. The
input data stream of the surround vehicles was obtained by a real-time sensor data fusion.
In various experiments and simulations it was shown that a reasonable performance could be
obtained when the weighting factor of the object’s velocity is high.

An activity classification approach was proposed by Khosroshahi et al. [KHO16]. The re-
searchers classified manoeuvres of surrounding vehicles at intersections. Hereby, twelve differ-
ent classes were utilized which describe the movement behaviour of the observed road users.
A deep LSTM architecture was deployed in order to learn a labelled dataset and to anticipate
the movement based on an observed movement pattern. It was shown that the model was able
to correctly predict the movement direction of the vehicles in most cases.

A different machine learning approach based on LSTM architectures was elaborated by Kim
et al. [KIM17]. The authors of this article used a occupancy grid map to assign future vehicle

2 State of the Art 7

positions in a probabilistic fashion. In order to predict the movement of a surrounding vehicle,
the object’s last coordinates were fed into a recurrent neural net and the LSTM computed the
probability of the occupancy for each finite grid element. It was shown that this methodology
has a higher accuracy in comparison to existing filter-based methods. These results were
obtained on a data collection from highway driving.

2.2 Related models for Sequence Prediction

A search in the relevant literature yielded that sequence learning approaches have been im-
plemented successfully in various interdisciplinary research fields. Several papers that were
recently publicised examined the capabilities of recurrent neural networks such as Long Short-
term Memory (LSTM) [HOC97] and Gated Recurrent Units (GRU) for sequence prediction
tasks. Very successful applications of these RNN can be found for machine translation [BAH14]
[CHO14] [SUT14], caption generation [VIN14], chatbots [VIN15] and image classification [KRI12].
In many cases, modern RNN architectures outperformed traditional approaches and this shows
that RNN are suitable for modelling complex long range sequential dependencies. In the follow-
ing, an overview about recent literature is given that deals in a general manner with recurrent
neural networks which are trained on positional sequential datasets in order to make future
predictions.

Graves [GRA13] used Long Short-term Memory recurrent neural networks for several sequence
generating tasks with complex long-ranged time dependencies. In particular, he trained the
LSTM network with handwriting sequences based on tracked pen-tip trajectories. Graves was
then able to show, that the trained net is capable of generating handwriting samples and in
another setting he could compute the probability distribution of future pen tip locations. To the
best of the authors knowledge, this approach is the first attempt of training X-Y positional data
with a RNN-LSTM and this idea inspired other researchers to train RNN with tracking datasets,
as for instance Alahi et al. [ALA16].

A sensor fusion architecture for car driver manoeuvres prediction was presented in [JAI15] by
Jain et al. The researchers gathered a huge labelled dataset consisting of different sensory
streams such as vehicle dynamics, surrounding information and two-dimensional trajectories
from tracked landmarks points of the drivers face. These temporal sequences were concate-
nated together and were used to train an end-to-end deep learning network that computes
the probabilities of the drivers future manoeuvres such as right turn or left line change. This
classifier was compared with several other baseline models and the authors of this publication
reported that the proposed LSTM architecture in combination with the facial positional data
caused an increase of the performance and lead to state-of-the-art results.

3 Artificial Neural Networks 8

3 Artificial Neural Networks

This chapter provides an overview over artificial neural networks with a particular focus on
recurrent neural networks for sequence learning. In the first subsection of this chapter the
fundamental background of neural nets is described. Section 3.2 introduces simple feedforward
neural networks and basic concepts for training. Section 3.3 gives a detailed description of
recurrent neural networks and their application in sequence learning. Finally, in section 3.5 the
introduced recurrent networks are used to construct prediction network architectures that are
able to model complex sequence tasks.

3.1 Background

Artificial Neural Networks (ANNSs) are a class of nature-inspired computational systems. An
ANN consist of a large collection of artificial neurons that are connected with each other through
weighted directed edges that imitate the synapses and neurons of a biological brain [BAS00].
The weights of the edges represent the strength of the synapses between the neurons [BAS00].
The computational complexity and the memory storage of a single neuron is limited. However,
the connection of hundred thousand of artificial neurons arranged in a network compound can
achieve remarkable artificial intelligence like performance. The computation of an ANN is trig-
gered when an input signal is send to one or several nodes that spread their output to their
connected neighbour nodes, which again forward their signal throughout the whole network.
At the initial state of an ANN all weights are randomly chosen and is known as an untrained
network [RUMB86]. This situation is comparable to a brain of a human new-born in which the
majority of the neurons are grown but the connecting synapses are not yet entirely formed.
Typically, ANNs are used to approximate unknown complex functions and are trained with the
help of very large datasets that are observations of a particular input and their corresponding
output of these unknown models. Thereby, the weights of the network are modified in such
a way that the artificial network model fits best to the observations. This methodology is also
known as supervised learning [GRA12].

An artificial neuron, usually described as node or unit, computes its output value by applying
an activation function to the weighted sum of its input values [BAS00]. Each input z is hereby
linked with its specific weight w;;. Note that the index notation j;’ denotes the weight which
receives the edge from node ;' and emerges into the unit j. The weighted sum is then added to
a bias term b; and the whole sum is put through the activation function f; of the unit (cf. figure
3-1),

aj =Y wiyay +b Eq. 3-1
j/

vj = [j(a;). Eq. 3-2

The activation function f; or transfer function is often a sigmoid, tanh or ReLu function (cf.
Attachment 9.1).

3 Artificial Neural Networks 9

Activation
] o— Wj1

? function Output
Inputs { 72 o > Wj2 \@ ~@ - Vj
/

T3 o— Wj3

Weights

Fig. 3-1: The output of the artificial neuron j is a weighted sum of its inputs which is put
through an activation function. Figure adapted from [GERO3b].

3.2 Feedforward Neural Networks

One of the simplest way for arranging artificial neural neurons are Feedforward Neural Networks
(FNNs). In such a network system, the neurons are ordered in vertical, straight, forward layers
where each unit of one layer is connected to every node in the following layer. This implies
that cyclic connections or recurrent edges, that would create a loop inside a graph, are not
allowed. Hence, the information flow inside the graph is directed only in one direction. In
contrast, recurrent neural nets have a feedback loops or also recurrent edges, resulting in a
cyclic graph (cf. Section 3.3). Figure 3-2 visualises a deep fully connected feedforward net
with six input nodes that are organised in the input layer. When the input x = (X1,...,z,) is
passed to the net, the input layer propagates its results to the nodes of the hidden layer, which
then in turn transfer their activation to the output layer, respectively the output units. FNN are
used for regression and classification task and are usually trained with the supervised learning
methodology.

Lwout First Second Third Output
npu i
P hidden hidden ~ Pidden layer
layer layer
layer layer
Tr] —
xro —
T3 — 7 yl
Irs —
Tre —

Fig. 3-2: Fully connected deep feedforward neural net with three hidden layers and two output
units. Note that there is no connection between units from the same layer.

3 Artificial Neural Networks 10

3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a subclass of Deep Neural Networks (DNNs). RNNs
have the unique feature that edges transfer data from the previous time step to the current
state. These loops, called recurrent edges, allow the information to persist over time and enable
complex, time-dependent sequence modelling. In contrast to FNNs RNNs do not require a fixed
dimensionality of the input and the output. This makes RNNSs a suitable choice for tackling tasks
with differing sequence lengths.

Before we start, a few terms and their mathematical notations are introduced. Since we con-
sider discrete sequences that are sampled at certain time steps indexed by ¢, we define the
input sequence,

X = (xl,xg,...xT) Eq 3-3
and the corresponding output sequence,
Y = (y1,92,---yr) Eq. 3-4

where each data point z;,y; is real vector with fixed dimensionality
¢ € R", y € R™. Eg. 3-5

For simplicity, the vectors of the input and the output have the same dimensionality and the
sequences X and Y have equal length. In fact RNNs do not need a fixed sequence length as
they can deal with different input and output dimensions. When a RNN computes predicted
output values, the sequence is denoted in the following by Y and i, respectively.

3.4 Long Short Term Memory Networks

Long Short Term Memory networks also called LSTMs where introduced by Hochreiter &
Schmidhuber [HOC97] in the late 90’s and are known for their good performance in storing
and remembering information for a long period of time outperforming standard RNNs. Their
recent success was caused by the increasing price-performance ratio of GPUs and the ad-
vances of deep learning algorithms such as optimisation techniques and parallel computing
enabling large-scale learning [LIP15]. In recent literature, LSTMs reached state-of-the-art per-
formance in various sequence learning tasks. Up to date, the application of LSTMs in speech
processing and natural language translation appears to be the most favoured research area
[SUT14] [GRA13] [CHO14] [BAH14]. Further applications are chatbots [VIN15], image caption
generation [VIN14], handwriting prediction [GRA13] and human motion prediction [ALA16].

In the literature many different variations of the original cell structure exist, such as the pop-
ular Peephole variant [GERO03a], the Gated Recurrent Unit (GRU) or the Depth Gated LSTM
[YAO15]. Since the former variant is used in the later implementation (cf. Section 5.3) and is
considered in the literature as the state of the art LSTM structure [GRA13], a detailed overview
is now given.

Figures 3-3 and 3-4 depict the LSTM memory cell architecture by Gers and Schmidhuber
[GERO03a] which extends a basic LSTM structure with the so called Peephole Connections.

3 Artificial Neural Networks 11

Both diagrams represent the same cell structure. While figure 3-3 has cell-centred ordered
structure, the second figure explicitly passes the cell state from the previous timestep C;_; as
an input to the current cell instance. The additional Peephole Connections have the effect that
each gate layer is allowed to inspect the current cell state. Gers et al. report that this new
architecture improves the accuracy of timing tasks that require the accurate measurement or
generation of timed events leading to the modern LSTM cell network structure,

it = 0(Waize + Whihi—1 + WeiCi—1 + b;) Eq. 3-6
ft = o(Wapxy + Wiphi—1 + WepCiq1 + by) Eq. 3-7
Cy = tanh(Wyexs + Wichi—1 + be) Eg. 3-8
Cr=fi®Cq+i®C Eg. 3-9
o = 0(Waors + Whohi—1 + WeoCy + bo) Eg. 3-10
ht = o @ tanh(C}) Egq. 3-11

where
e r ®y : denotes the element-wise product

e Candidate Internal state C; : The candidate internal state is computed at the input node
and represents possible future states of the memory.

e Forget gating vector f;: The forget gate controls the information

e Input gating vector i;: The gate i; was introduced to protect the memory contents from
currently unwanted input.

e Internal state C;: The core of the cell is denoted with C;.

e Output gating vector o;: Before the new computed internal state C; is forwarded as an
output of the recurrent cell, it is run through a tanh activation and it is multiplied by the
output gate o;.

3.5 Prediction Network Architecture

There exists various architectures that arrange RNN cells in different shape and with differing
information flows that are designed for their corresponding task. Figure 3-5 visualises different
applications of sequence learning tasks which are common in literature. The subfigure on the
top left represents a sequence generation task with a given single data point. This could be for
example a image caption generation task like in [VIN14]. In the opposite case on the top right,
a sequence is classified by one output vector. An example application for that would be classifi-
cation of movie reviews into different moods [TIM14]. A sequence-to-sequence mapping which
has been used for machine translation [CHO14] is depicted on the bottom left. Predictions for
every new time step in real time applications are realise by an architecture visualised on the
bottom right.

3 Artificial Neural Networks 12

by

Fig. 3-3: Long Short Term Memory Cell with Peephole connections (red arrows) [GRA13],
cell-state centred representation.

hy
“1f ® ® i
Ganh>
ft " @ %3 @
Cy
h alem(c ,
t—1 |
(

Lt

Fig. 3-4: Long Short Term Memory Cell with Peephole connections (red lines), explicit repre-
sentation similar to Olah [OLA15].

In the following, such a prediction architecture is introduced, which is later used in chapter 5
for the trajectory prediction task. This design can be classified as an encoder-decoder struc-
ture and it was originally designed for natural language processing tasks. To the best of the
authors’ knowledge, the first encoder-decoder architecture for sequence-to-sequence mapping
was developed by Sutskever et al. [SUT14]. The main idea of this architecture is to encode the
input sequence to an internal representation or so-called context vector with fixed length. This
context vector can be regarded as a summary of the input and it is fed into the decoder in order
to generate the sequential output.

We introduce now an abbreviation for a Long-Short-Term Memory cell,

LSTM(X) = (Cy—1, ht—1,2¢) Vt Eq. 3-12
where X is the observation sequence with length N,,, € N
X = (z1,22,...2N,,,)- Eq. 3-13
Further the predicted output sequence has now the length N,.q € N,

Y = (91,025 s UNprea)- Eq. 3-14

3 Artificial Neural Networks 13

The the internal representation of the input sequence or the context vector is denoted by 1 with
fixed dimensionality.

_

)CT)(D (

U\ J
~
-

(%
e
o
)
(O

m
(%
m
(%
m
%
e\
o
m
o
m
m
%
m
A\
m
%

D) C D C D C D (

u
e
(2
e
(%

Fig. 3-5: Sequence mapping scheme based on figure from Karpathy [KAR15] with input rep-
resented as red rectangles, recurrent cells in green and output in blue.

3.6 Sequence to Sequence Model

This model was described by Sutskever et al. [SUT14] and represents the first encoder-decoder
LSTM architecture with an additional context vector. It was originally designed for a language
translation task and it achieved compelling results in several benchmark methods [PAP02].

The mechanism of this model can be explained by the following. Usually, the encoder and the
decoder are trained to maximise the conditional distribution p(y1, ..., yn,, 4|71, - - -, ZN,,.,) OVEr
the input and output sequences where N,,..; may be different from N,,,. The net computes this
probability by reading the input X element by element in the encoder. After reaching the <E0S>
token, the fixed dimensional representation V' is given by the last hidden state of the LSTM
(hn,,, and Cy,,.). The decoder consists of another LSTM with an initial state which is set to
the summary V and it is conditioned to generate the output sequence Y based on the previous
prediction ;1 and the previous hidden states, respectively V. A pseudo formulation of this
architecture is given for the encoder by

X = (z1,...,2N,,,)

Eq. 3-15
V = LSTM(X)

and for the decoder by,

91 = LSTM(Co, ho, V)

A Eq. 3-16
= LSTM(Ct—17 ht—17 yt—l) Vi= 27 s 7Npred-

In addition to that figure 3-6 visualises this scheme explicitly. The network is trained as usual.
The true output y; is fed to the decoder and the error propagated through the whole architecture
in order to fit the the input.

3 Artificial Neural Networks 14

i ?/2

context vector

Ty T2 T3 <E0S>

Fig. 3-6: Sequence to sequence architecture by [SUT14] with Ny,s = Npeq = 3. In green the

encoding LSTM and in blue the decoder. The prediction of the decoder ; at each
time step ¢ becomes the input for the decoder at the next time step. Figure adapted

from Lipton et al. [LIP15].

4 Approach and Performance Evaluation 15

4 Approach and Performance Evaluation

In this chapter, the general approach of this thesis is presented in 4.1. Subsequently, it is
necessary to define performance criteria of a prediction model in order to compare different
models or model configurations with each other. These definitions will be explained in section
4.2.

41 Approach

The analysis of the relevant existing literature for prediction models shows that it is desirable
to investigate the potentials of recurrent neural networks for general object trajectory predic-
tion. Sequence to sequence designs combined with LSTM cells performed remarkably well in
various research problems, in which complex time dependant sequential data was trained and
generated. For example, natural language processing tasks or handwriting recognition were
successfully modelled with this special machine learning approach.

Consequently, the approach of this thesis consists of the application of a LSTM architecture on
an object trajectory prediction setting. Hereby, an encoder-decoder architecture should be used
in order to process a certain observation of an object and consequently predict the most prob-
able future trajectory. By this means, a sequence to sequence mapping will be deployed. The
foundation of this deep learning approach should be a dataset that contains a set of trajectories
that were captured from a vehicle’s ego perspective. In addition to observations of the ego ve-
hicle, it is also possible to use the ego motion as a model input. The yaw rate and the velocity
of the test vehicle directly influence the relative position and relative velocity of its surrounding
objects. As shown in [KIM17], fusing ego motion with relative spatial information is a common
modelling approach. Hence, different end-to-end learning strategies can be formulated. E.g. it
is possible to consider spatial coordinates of an object with ego motion fusion or use a relative
history mapped onto spatial coordinates without ego motion. A search in the relevant literature
yielded that there does not exist any comparison between such approaches. Hence, there is a
need to investigate different learning strategies with different mapping techniques.

Based on the obtained results of the LSTM model and the learning strategies, it is necessary
to compare and evaluate the prediction quality in each case. Therefore, another goal in this
thesis is to analyse, whether the forecasting reliability and stability is comparable to a baseline
model and whether the model’s predictions are acceptable for a safety-critical application.

4.2 Definition of Performance Evaluation

In order to determine the prediction quality of a model or a special model configuration, it
is essential to define performance criteria. To persevere consistency with relevant literature,
some of the metrics used by [ALA16] will be also used in this work:

e Mean Squared Displacement denoted by £,/sp
Average of the squared distances between all estimated coordinates and the true coordi-

4 Approach and Performance Evaluation 16

nates of all test trajectories

¢ Mean Final Displacement denoted by £/rp
Average of the distance between predicted final position and the true final position of all
test trajectories

e Mean Displacement denoted by £,/p
Average of the distances between all estimated coordinates and the true coordinates of
all test trajectories

Implementation details of these metrics can be found in the attachment 9.2.

5 Model Design 17

5 Model Design

This chapter gives a detailed description of the implementation of the approach of this seminar
thesis. Section 5.1 specifies the datasets on which the deep learning approach will be applied.
Consequently, section 5.2 displays a pre-processing pipeline that was applied on every dataset
to ensure processability with sequence to sequence models. An in-depth description of the
model design and the deployed LSTM cell is given in 5.3. Details about the training procedure
and the evaluation of the model quality can be found in section 5.4. In order to measure the
robustness of a trajectory prediction model, a stability analysis method is proposed in section
5.6.

5.1 Dataset

In this thesis, three datasets from the KITTI Dataset [GEI13] are used which were all captured
with an identical setup. A visualisation and statistics for each of the datasets can be found in
Attachment 9.3. The datasets contain the relative positions and velocities of the tracket objects
which are classified as cars, trucks, cyclists and pedestrians. These information are sampled at
10H z. In addition to that, movement information of the ego vehicle is also stored in the datasets.
The following three road scenarios were choosen in order to provide a realistic driving scenario
for the evaluation of the prediction models:

e City: Urban scenario with cars, pedestrians and cyclists. Captured dataset has a total
length of 7 minutes and 41 seconds.

¢ Residential: Slow traffic flow with cars and only few pedestrians. Captured dataset has
a total length of 14 minutes and 51 seconds.

e Road: Fast traffic flow with cars and some few trucks. Captured dataset has a total length
of 3 minutes and 44 seconds.

e All: All previous datasets merged together. Captured dataset has a total length of 26
minutes and 16 seconds.

5.2 Data Pre-processing

Almost every deep learning approach makes use of intense data pre-processing in order to
make the data usable for neural networks. This also applies to our setting. We start from the
premise that a given dataset consists of a set of uncorrelated single trajectories with different
length, but with small measurement errors. Thereby, each trajectory consists of several data
points sampled with a fixed sampling frequency fs measured in [Hz]. One data point denotes
the position of the object in a relative coordinate system at time ¢. In addition to that, the ego
motion of the observing vehicle is capured in this specific time step. Thus, the trajectory Y; can
be written as a four-dimensional matrix where the first column denotes the x-coordinates and
the second column consists of the y-coordinates measured in [m]. The third column contains

5 Model Design 18

the current velocity in [m/s] and the fouth column contains the yaw rate of the vehicle:

T
S S
vi=| : : : | e RN Eq. 5-1
wg\fifl yZNz‘*l I/Z-Nifl (bgVi*l
i Yi Vi b;
wherei =1, ..., K with K the total amount of trajectories in the dataset and N; the total number

of sample points of trajectory Y.

In the following the basic preprocessing steps are presented, that are applied to every trajectory
of a dataset in order to obtain a new dataset that is suitable for supervised training.

1. Smoothing
Usually the live capture measurement, especially those measured through a laser scan-
ner, are very noisy. Hence, a one-dimensional Gaussian filter from the SciPy package
[JON15] is applied to the xy-coordinates in order to smooth the trajectories.

2. Feature Generation
In addition to the absolute position of the objects, an relative description of the positions
is applied. Therefore, the preprocessing class implements a polar-coordinate system that
computes the radius r and angular heading « of the tracket road user. Hereby r can be
obtained by Pythagoras,

=l - a2) Eq. 52
and the o can be computed by

o = arctan(y? —y' 2l — 2 —arctan(y Tt -y %2 — 2%, Eq. 5-3

7 3

The implementation of the feature generation and the equations 5-2 and 5-3 are taken
from [WIS17].

3. Normalisation

Data normalisation is an essential step of the pre-processing for machine learning. Two
different scaling method are implemented in the preprocessing class. The first method
uses the maximal and minimal bounds of the dataset. Hereby, all data points of the
dataset are linearly scaled from the original domain to the new region [—1,1]2. Another
method scales the dataset in such a way that this has a mean of zero and a standart
deviantion of one. These scaling methods ensure that the activation functions in the
neural net are fully addressed and thus a faster convergence of the training procedure is
archived.

4. Sliding Window
Sliding Window is a technique that subsamples a single trajectory with two constant sized

5 Model Design 19

moving intervals into several subparts. The first interval is intended to generate the ob-
servation of the object’s movement. This sequence is also known as the history of the
object. The observation window is then incrementally moved, simultaneously with the
prediction window, over the next coordinate pairs until the prediction window reaches the
last point of the trajectory.

0O CANTY

('1'}-!/;) \

Fig. 5-1: Sliding Window applied to trajectory Y;. In red the window, the observations are
taken into account while the prediction trajectories are captured by the yellow
window. That applies for 1 < i’ < N; — (Nops + Nprea) + 1.

Hence, from one single trajectory Y; with length N; > Ngs + Npreq, We oObtain several
observation and prediction trajectories that are denoted in the following by O, and P;.
This Sliding Window method can be applied with arbitrary lengths that are defined in the
configuration file, but in the standard case Ny, = 8 and Ny,.q = 12 like in [ALA16] are
used. Note that a trajectory Y; is removed from the training dataset if N; < Nops + Npred-
That means, the sequence is too small to be processed by the sliding window.

To summarise the preprocessing, the following matrix is obtained. It describes one trajectory
of a single object and the ego motion of the observing vehicle at this specific time interval.

1 1 1 1 1 1
i Y; T o v i
2 2 2 2 2 2
i Yi i &; Vi b7
Yi=| : : : 5 5 D | eRNO Eq. 54
N;—1 N;—1 _N;,—1 N;—1 N;—1 N;—1
le yzz rzl ail Viz (biz
N, N, N, N; N, N,
xi (3 yZ [3 . [3 5 [3 Z [3 ¢Z [3
5.3 Model Details

The actual implementation of the used LSTM is done in the Python module Recurrent Shop
[RAH16a] which is accessed by the seq2seq package [RAH16b]. The implemented LSTM cell
is the peephole LSTM variant [GERO03a] with a hard sigmoid activation function (cf. attach-
ment 9.1). The seq2seq package deploys an encoder and decorder architecture which is jointly
trained using an input and output sequence. In the studied case, the input sequence is the
preprocessed observation trajectory O;, whereas the target sequence is defined as the cor-
responding prediction sequence P,. Hence, the arising general optimisation problem can be
written as

pw(P|O) = argmin {L(P, P)} Eq. 5-5

puw(P,0)

where P = f(O;w) is the model’s prediction and w are the weights of the RNN.

5 Model Design 20

5.4 Training & Evaluation

As we perform supervised learning with the presented approach, it is crucial to train and to
evaluate the model on different datasets. Therefore, the model evaluation is done using cross
validation. By this means, the dataset is split with a fixed integer n = 5 into equally sized
parts. A predefined count ¢ = 4 denotes the number of iterations that is performed on this
split dataset. In each iteration four of this splits are jointly used to train the model, whereas the
remaining split is used as the test split. In the next iteration the train and test splits are rotated
in order to compute a homogeneous performance criteria considering the whole dataset. When
the training of one iteration has finished, the observation trajectories of the test split are taken
as an input to the model f(-,w). Consequently, the output of the RNN are the corresponding
predictions P;:

Py = f(O;,w) Vi e test-split Eq. 5-6

Subsequently, the predictions are measured against the true trajectories P by computing the
introduced performance evaluation criteria £(P, P). Then, the final model performance con-
cerning the whole dataset is computed by averaging over all results of the iterations.

In addition to the cross validation method, all samples in the test split are randomly shuffled, in
order to archive a possible faster convergence of the training [BEN12].

5.5 Learning Strategies

The whole data preprocessing offers several approaches in order to learn the trajectory pre-
diction task. On the one hand there are the spatial x-y coordinates of the object and on the
other hand it is possible to additionally use the relative Ra data stream of one single object.
Further, it is possible to consider the ego motion of the observing vehicle as a model input like
in [KIM17]. As there are no comparable approaches in the relevant literature, it is not possible
to give an a-prior performance estimation of the following learning strategies. Hence the best
strategy has to be determined by trial and error.

e XY — XY Learning of local paths.

XY Ra — Ra: Learning of local movement patterns.

e Ra — Ra: Learning of a global movement model.

XYV — XY: Learning of local paths jointly with the ego velocity.

XYV¢ — XY: Learning of local paths jointly with the ego motion.

e XY RaV¢ — Ra: Learning of global movement patterns jointly with the ego motion.

Where the notation feature — label represents the sequence mapping that is learned by the
neural network.

5 Model Design 21

The approaches that use XY as a feature need the mean squared displacement (cf. Eq. 9-3)
as a loss function. As soon as the Ra is used it is needed to adapt the loss function in order
to evaluate adequately the relative position information (cf. Eq. 9-6). Further, the Ra output is
post-processed in such a way that the corresponding trajectory is reconstructed.

5.6 Stability Analysis

In section 4.1 it was stated that a prediction model must be able to cope with uncertainties in
the measurements without evoking instabilities in the prediction. Thus, in order to investigate
the stability of a RNN prediction model, a basic uncertainty analysis method is explained.

If a trained model f(-,w) and a test observation trajectory O; is considered, it is the task to
determine the prediction stability of this single observation. Hence, artificial measurement un-
certainties are introduced by adding noise to the input. To archive this, each single element of
the trajectory O; is added by a random number, drawn from a Gaussian distribution with zero
mean p = 0 and with a fixed standard deviation of ¥ = 0.1 [m]. The resulting matrix is thus the
perturbed trajectory O;". This procedure is repeatedly done for v = 2048 times with the effect
that a new noisy dataset is generated. It is denoted by O~ € RV *Noss*2 Consequently, the per-
turbed trajectories are pre-processed and finally used to perform the prediction task obtaining
a set of model predictions

P~ = f(0~,w). Eq. 5-7

The result is in turn a stochastic distribution that is visualised by a heat map. By this means,
the stability of the model can be manually evaluated and interpreted (cf. section 6.3).

6 Results and Evaluation 22

6 Results and Evaluation

This chapter gives a detailed discussion and evaluation of the presented approach. In the first
section 6.1, an initial hyper-parameter search is performed and discussed. The performance of
the six different sequence to sequence architectures is compared in section 6.2. The prediction
stability of the presented approach is visualised and assessed in section 6.3.

6.1 Initial Hyperparameter Parameter Search

An initial rough hyperparameter search was performed with the tool Hyperopt [BER13b] in
order to obtain an idea how the parameters could be chosen. This tool applies the TPE
(Tree-structured Parzen Estimator) search algorithm that was especially designed for optimis-
ing ANN’s hyper-parameters [BER13a]. The optimisation target was to minimise the loss Ly;sp
of a cross validation sample. Hereby, 50 optimisation iterations were executed for each dataset
and each learning strategy. A wide set of hyperparameters including dropout, batch size, scal-
ing strategy and loss function was used. Table 6-1 gives obtained optimal fine parameter space
for the fine tuning optimisation, that is described in the following section (cf. section 6.2).

Learning Strategy | Depth d | Hidden Dimensions % | Learning Rate Scaling Method | Loss Function | Epochs e
XY - XY 1,2 64, 128 05-1,5 bounds MSD 1-300
XY Ra — Ra 1,2 64, 128 0,05 - 0,5 | mean standard deviation MSDOC 1-300
Ra — Ra 1,2 64, 128 0,05 - 0,5 | mean standard deviation MSDOC 1-300
XYV - XY 1,2 64, 128 0,5-1,5 bounds MSD 1-300
XYV¢— XY 1,2 64, 128 05-1,5 bounds MSD 1-300
XY RaV¢ — Ra 1,2 64, 128 0,05 - 0,5 | mean standard deviation MSDOC 1-300

Fig. 6-1: An initial parameter search led to this rought parameter space for each learning
strategy. This parameter space is used for the fine hyperoptimisation.

6.2 Fine Tuning Results

In order to assess the prediction quality of the sequence to sequence model a simple baseline
model was implemented and applied on the datasets. An out-of-the-box Kalman filter with a
constant velocity movement model was deployed. The observation trajectory is hereby utilised
to determine the state of the tracked object. Subsequently, the state at the last data point of the
observation is used to extrapolate the trajectory for N, time steps.

The qualitative model comparison is performed by computing the performance evaluation cri-
teria of each model and for all datasets. Hereby, the results of the proposed learning strate-
gies are obtained by the fine hyper-parameter optimisation. The uncertainty parameters in the
Kalman filter where also determined through an optimisation. Both, baseline and sequence
to sequence architectures obtained identical preprocessed trajectories. This should ensure
comparability among them.

The data in Figure 6-2 indicate, that the sequence-to-sequences approaches outperforms the
baseline model in most cases. In particular, the performance of the XY Ra — Ra and the
Ra — Ra learning strategy is significantly better than all other learning strategies. Considering

6 Results and Evaluation 23

the ego motion in the input of the approaches does not lead to an overall improvement of
the prediction quality. Apparently, the neural net is not able to successfully process these
additional information. Thus, a sensor fusion or a movement model is not achieved with these
approaches. Moreover, it is quite plausible that the learning strategy XY — XY performs poor
on the Road dataset. This can be explained by the fact that the Road dataset is the smallest
of all datasets (cf. section 9-2) which leads to lack of regional training data. This applies also
forthe XYV — XY and XY V¢ — XY mappings.

The Ra — Ra approach seems to be most effective on the datasets Residential, Road and
City. It can be concluded that this approach does not need much training data for a very
good prediction quality. Thus, this simple approach learns a precise global movement model
just based on the yaw rates and the distances between time steps. But if we consider the
much more dense dataset All, the XY Ra — Ra strategy is slightly more accurate. Combining
positional data with the R« vector as a model input seems to be beneficial on a dense dataset.
Here, further research with much larger datasets has to be performed, since the All dataset
captured only 26 minutes with 1233 independent trajectories. Much larger datasets could be
deployed in this case.

Figures 6-3 and 6-4 visualise the prediction results of the Kalman Filter and the six learn-
ing strategies. In addition, the real future trajectory (green) and the corresponding observa-
tion (blue) is shown. These figures indicate, that the RNN is able to approximate the ground
truth much more accurately than the baseline model especially considering winding trajecto-
ries. However, some predictions are slightly error prone. In Figure 6-4 it is clearly visible that all
strategies based on a local mapping (mapping to XY) have a worse accuracy than strategies
that map to Ra. It becomes evident that an abnormal movement pattern is better generalized
by an Ra learning. On the other hand, a XY mapping tends to minimise the local error and thus
some kind of mainstream prediction is achieved with these strategies. Note that the underlying
training data is shown cyan-coloured in the background. All XY based strategies are attracted
by the areas with a high density (dark cyan-coloured background).

Metric Dataset Kalman filter | XY — XY | XYRa - Ra | Ra = Ra | XYV = XY | XYV¢ — XY | XYRaVé — Ra
All 1.053 0.673 0.463 0.483 0.659 0.798 0.469
Larsn Residential 1.001 0.711 0.512 0.502 1.124 1.647 0.553
) Road 1.656 2.971 0.841 0.798 18.187 22.876 2.299
City 1.003 0.868 0.461 0.422 0.913 2.825 0.503
All 0.652 0.482 0.372 0.488 0.488 0.719 0.379
Lain Residential 0.688 0.501 0.393 0.387 0.642 0.719 0.410
Road 0.728 0.962 0.438 0.402 2.600 3.105 0.804
City 0.618 0.537 0.373 0.344 0.583 0.879 0.403
All 1.296 0.832 0.833 0.936 0.936 1.283 0.829
Lot Residential 1.379 0.972 0.875 0.880 1.181 1.281 0.885
Road 1.397 1.700 0.916 0.880 4.377 5.290 1.554
City 1.225 1.037 0.843 0.785 1.039 1.171 0.873

Fig. 6-2: Quantitative results of all prediction models on all dataset. The performance for each
model is measured with the proposed model evaluation criteria.

6 Results and Evaluation

24

30
x-coordinate [m]

x-coordinate [m]

2
x-coordinate [m]

=
s
=2
——
=
o=
e

i 3

-
==
=
——
=
-
-

Observation
Current position

Real ajectory
Seq2Seq_msdoc_XYRAZRA_mean_std_0
Seq2Seq_msd_XYVPHI2XY_bounds_1
Seq2Seq_msd_XY2XY_bounds_2
Seq2Seq_msd_XYV2XY_bounds_3
Seq2Seq_msdoc_XYRAVPHI2RA_mean_std_4
KalmanFilter_no_loss_XY2XY_bounds_5
Seq2Seq_msdoc_RAZRA_mean_std_6

Observation
Current position

Real trajectory
Seq2Seq_msdoc_XYRAZRA_mean_std_0
Seq2Seq_msd_XYVPHI2XY_bounds_1
Seq2Seq_msd_XY2XY_bounds_2
Seq2Seq_msd_XYV2XY_bounds_3
Seq2Seq_msdoc_XYRAVPHI2RA_mean_std_4
KalmanFilter_no_loss_XY2XY_bounds_5
Seq2Seq_msdoc_RAZRA_mean_std_6

Observation
Curtent position

Real trajectory
Seq2Seq_msdoc_XYRAZRA_mean_std_0
Seq2Seq_msd_XYVPHI2XY_bounds_1
Seq2Seq_msd_XY2XY_bounds_2
Seq2Seq_msd_XYV2XY_bounds_3
Seq2Seq_msdoc_XYRAVPHI2RA_mean_std_4
KalmanFilter_no_loss_XY2XY_bounds_5
Seq2Seq_msdoc_RAZRA_mean_std_6

<
=
o=
S
==
==
e

Observation
Current position

Real ajectory
Seq2Seq_msdoc_XYRAZRA_mean_std_0
Seq2Seq_msd_XYVPHI2XY_bounds_1
SeqzSeq_msd_XY2XY_bounds_2
Seq2Seq_msd_XYV2XY_bounds_3
Seq2Seq_msdoc_XYRAVPHI2RA_mean_std_4
KalmanFilter_no_loss_XY2XY_bounds_5
Seq2Seq_msdoc_RAZRA_mean_std_6

30
x-coordinate [m]

x-coordinate [m]

2
x-coordinate [m]

b+t

8

-
==
-
-
s
=
-

Obsenvation
Current position

Real trajectory
Seq2Seq_msdoc_XYRAZRA_mean_std_0
Seq2Seq_msd_XYVPHI2XY_bounds_1
Seq2Seq_msd_XY2XY_bounds_2
Seq2Seq_msd_XYV2XY_bounds_3
Seq2Seq_msdoc_XYRAVPHI2RA_mean_std_4
KalmanFilter_no_loss_XY2XY_bounds_5
Seq2Seq_msdoc_RAZRA_mean_std_6

Observation
Current position

Real trajectory
Seq2Seq_msdoc_XYRAZRA_mean_std_0
Seq2Seq_msd_XYVPHI2XY_bounds_1
Seq2Seq_msd_XY2XY_bounds_2
Seq2Seq_msd_XYV2XY_bounds_3
Seq2Seq_msdoc_XYRAVPHI2RA_mean_std_4
KalmanFilter_no_loss_XY2XY_bounds_5
Seq2Seq_msdoc_RAZRA_mean_std_6

Fig. 6-3: Different learning strategies in comparison with the Kalman Filter on dataset All us-

ing different time steps.

6 Results and Evaluation 25

- —e— Current positon
— Real uajectory
— Seq2Seq_msdoc_XYRA2RA_mean_std_0
—*— Seq2Seq_msd_XYVPHI2XY_bounds_1

XY_bounds_3
— Seq2Seq_msdoc_XYRAVPHIZRA_mean_std_4
| —— KalmanFiter_no_loss_XY2XY_bounds_5
@ Seq2Seq_msdoc_RAZRA_mean_std_6

— Observation
—e— Current position
— Real trajectory 7 :
. —— Seq2Seq_msdoc_XYRAZRA_mean_std_0 J —— Seq2Seq_msdoc_XYRAZRA_mean_std_0
T SeqSeqmsaXYVPHIXY_bounds 1 L © — Scq2Seq_msd_XYVPHI2XY_bounds_1
—¥— Seq2Seq_msd_XY2XY_bounds_2 ¥
- Seq2Seq_msd_XYV2XY_bounds_3
— Seq2Seq_msdoc_XYRAVPHIZRA_mean_std_4
—— KalmanFilter_no_loss_XY2XY_bounds 5 g —— KalmanFilter_no_loss_XY2XY_bounds 5
Seq2Seq_msdoc_RAZRA_mean e SeqaSeqmsdoc_RAZRA_mean std_6

—— KalmanFilter_no_loss_XY2XY_bounds 5
~#— Seq2Seq_msdoc_RAZRA_mean_std_6

26 26
x-coordinate [m] x-coordinate [m)

Fig. 6-4: Different learning strategies in comparison with the Kalman Filter on dataset All us-
ing different time steps.

6 Results and Evaluation 26

6.3 Prediction Stability

The prediction stability analysis is performed by using the presented uncertainty analysis in
section 5.6. Each learning strategy was investigated with the best fitting parameter set. The
resulting stability heat maps were manually examined. It was generally observed that the model
prediction did show some small instabilities. Perturbation in the input of the model leads to a
uncertainty in the output that is visualised in the following as a heat map. These heat maps
have often a conical shape. A few chosen examples of the stability visualisations are depicted
in Figure 6-5. Every different learning strategy obtained the identical input trajectories. The All
dataset was used to train these models.

In all these cases the distribution is located in the close proximity of the ground truth. Only small
variations can be observed. The strategies that map to Ra tend to have a slight bigger conical
shape compared to a XY mapping (cf. Figures 6-5i, 6-5iv and 6-5vi). This can be explained
by the fact that the Ra strategy reconstructs the future trajectory by extrapolating from the last
known position. Hence, this approach is much more sensitive to small perturbations and errors
propagate more likely compared to the other approach.

It is important to stress, that it cannot be excluded that certain model inputs could cause an un-
stable model response. Especially, regions with a very thin underlying training data might cause
negative effects when using a local-based XY mapping. Thus, a more statistically valid method
has to be elaborated and applied in future investigations in order to examine the reliability the
presented prediction models.

6 Results and Evaluation

27

Real path
Observation
Perturbed Observation
—e— Current postition

12 14 16 18 20 2 2 2
x-coordinate [m]

(i) XYRa — Ra

Real path
Observation
Perturbed Observation
—e— Current postition

18 20 22 2 2
x-coordinate [m]

(i) XY — XY

Real path
Observation
Perturbed Observation
—e— Current postition

20
x-coordinate [m]

(v) XYRaVé — Ra

400

350

300

150

100

500

400

200

100

y-coordinate [m]

y-coordinate m]

y-coordinate [m]

150

175
x-coordinate [m]

200

Real path
Observation
Perturbed Observation

—e— Current postition

XYVé— XY

18

20
x-coordinate [m]

Real path
Observation

Perturbed Observation

—e— Current postition

(iv) XYV = XY

(vi) Ra — Ra

18 20
x-coordinate [m]

Real path
Observation

Perturbed Observation

—e— Current postition

Fig. 6-5: Model prediction stability on dataset All and different learning strategies.

400

100

700

600

500

200

100

400

350

200

100

7 Conclusion and Outlook 28

7 Conclusion and Outlook

This thesis presented an approach for a surrounding object trajectory prediction with recur-
rent neural networks at different road scenarios. State of the art Long Short-Term Memory
designs where deployed in order to learn preprocessed trajectories in an end-to-end fashion.
Six different learning strategies were tested and compared on four publicly available datasets.
In all cases the neural network was able to predict future individual movements with a good
accuracy for a given history trajectory. The overall prediction quality of the specific model con-
figurations were hereby measured by several performance evaluation criteria. On this basis, it
was qualitatively shown that the proposed methods outperformed a basic Kalman Filter.

In order to find the best hyper-parameters of the RNN, a systematic optimization has been car-
ried out. In this respect, the effect of training parameters, loss functions and scaling strategies
in combination with different learning strategies were assessed and the final model parameters
were chosen in such a way that the prediction accuracy was maximized. It turned out that Ra
based strategies need the MSDOC loss function and a very small learning rate in comparison
to the XY based strategies. The highest prediction quality was obtained with the XY Ra — Ra
and the Rae — Ra approach. This behaviour was observed on all datasets. Further, the
XY Ra — Ra mapping showed a slight better behaviour on a dense dataset in contrast to the
Ra — Ra learning strategy. Here, further analyses with bigger datasets has to be performed.

Contradictory to a first assumption, adding additional information of the ego vehicle to the model
input does not lead to an improvement of the prediction quality. The RNN is not able to process
the velocity or the yaw rate of the observing vehicle and associate this information with the
relative movement of the surrounding objects.

Further analyses demonstrated that uncertainties in the input of such model leads to small
instabilities in the prediction. This behaviour was observed on manually evaluated stability
visualizations. However, it would be conceivable that abnormal model input would cause incon-
sistent predictions. Thus, future investigations should include a statistically valid approach that
determines the overall model stability.

Although interesting results have been achieved in this thesis, it has to be admitted that the
presented approach are not quite appropriate for a collision detection system since the dataset
does not contain any collisions. Therefore, it is a future task to validate the results of this
thesis by using simulated trajectory datasets that contain additional collisions with the ego
vehicle. Moreover, the presented approach does not consider the orientation of the objects.
Considering the orientation of a vehicle in a prediction model could lead to a higher forecasting
quality.

8 Literature 29

8 Literature

[ALA16]

[AMMO9]

[BAH14]

[BAS00]

[BEN12]

[BER13a]

[BER13b]

[CHO14]

[GEI13]

[GER03a]

ALAHI, A.; GOEL, K.; RAMANATHAN, V.; ROBICQUET, A.; FEI-FEI, L.; SAVARESE,
S.,

Social LSTM: Human Trajectory Prediction in Crowded Spaces

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016

AMMOUN, S.; NASHASHIBI, F,,

Real time trajectory prediction for collision risk estimation between vehicles

2009 IEEE 5th International Conference on Intelligent Computer Communication
and Processing, Aug. 2009, pp. 417-422

BAHDANAU, D.; CHO, K.; BENGIO, Y.,
Neural Machine Translation by Jointly Learning to Align and Translate
CoRR abs/1409.0473 (2014)

BASHEER, I.; HAIMEER, M.,
Artificial neural networks: fundamentals, computing, design, and application
Journal of microbiological methods 43.1 (2000), pp. 3—31

BENGIO, Y.,
Practical recommendations for gradient-based training of deep architectures
CoRR abs/1206.5533 (2012)

BERGSTRA, J.; YAMINS, D.; COX, D. D.,

Making a Science of Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures

Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML13, Atlanta, GA, USA: JMLR.org, 2013, pages

BERGSTRA, J.; YAMINS, D.; COX, D. D.,

Making a Science of Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures

Proceedings of the 30th International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, 2013, pp. 115-123

CHO, K.; MERRIENBOER, B. van; GULCEHRE, C.; BOUGARES, F.; SCHWENK,
H.; BENGIO, Y.,

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Ma-
chine Translation

CoRR abs/1406.1078 (2014)

GEIGER, A.; LENZ, P; STILLER, C.; URTASUN, R.,
Vision meets Robotics: The KITTI Dataset
International Journal of Robotics Research (IJRR) (2013)

GERS, F. A.; SCHRAUDOLPH, N. N.; SCHMIDHUBER, J.,
Learning Precise Timing with LSTM Recurrent Networks
J. Mach. Learn. Res. 3 (2003), pp. 115-143

8 Literature 30

[GERO3b] GERSHENSON, C.,
Artificial Neural Networks for Beginners
CoRR cs.NE/0308031 (2003)

[GRA12] GRAVES, A,
Supervised Sequence Labelling with Recurrent Neural Networks
Vol. 385, Studies in Computational Intelligence, Springer, 2012

[GRA13] GRAVES, A,
Generating Sequences With Recurrent Neural Networks
CoRR abs/1308.0850 (2013)

[HOC97] HOCHREITER, S.; SCHMIDHUBER, J.,
Long Short-Term Memory
Neural Comput. 9.8 (1997), pp. 1735—-1780

[JAI15] JAIN, A.; SINGH, A.; KOPPULA, H. S.; SOH, S.; SAXENA, A,
Recurrent Neural Networks for Driver Activity Anticipation via Sensory Fusion Ar-
chitecture
CoRR abs/1509.05016 (2015)

[JON15] JONES, E.; OLIPHANT, T.; PETERSON, P, et al.,
SciPy: Open source scientific tools for Python
http://www.scipy.org/, accessed 09-March-2017, 2015

[KAN17] KANG, C. M.; JEON, S. J.; LEE, S. H.; CHUNG, C. C.,
Parametric trajectory prediction of surrounding vehicles
2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES),
June 2017, pp. 26-31

[KAR15] KARPATHY, A.,
The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/, accessed 20-December-2016,
2015

[KHO16] KHOSROSHAHI, A.; OHN-BAR, E.; TRIVEDI, M. M.,
Surround vehicles trajectory analysis with recurrent neural networks
Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Confer-
ence on, |IEEE, 2016, pp. 2267-2272

[KIM17] KIM, B.; KANG, C. M.; LEE, S.; CHAE, H.; KIM, J.; CHUNG, C. C.; CHOI, J. W.,
Probabilistic Vehicle Trajectory Prediction over Occupancy Grid Map via Recurrent
Neural Network
CoRR abs/1704.07049 (2017), arXiv: 1704.07049

[KRI12] KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E.,
Imagenet classification with deep convolutional neural networks
Advances in neural information processing systems, 2012, pp. 1097-1105

[LIP15] LIPTON, Z. C.,

http://arxiv.org/abs/1704.07049

8 Literature 31

A Critical Review of Recurrent Neural Networks for Sequence Learning
CoRR abs/1506.00019 (2015)

[MUJ16] MUJTABA, H.,
NVIDIA Pascal GPU Analysis
http://wccftech.com/nvidia-pascal-gpu-analysis/, accessed 05-March-2017, 2016

[OLA15] OLAH, C,,
Understanding LSTM Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs/, accessed 20-December-
2016, 2015

[PAPO2] PAPINENI, K.; ROUKQOS, S.; WARD, T.; ZHU, W.-J.,
BLEU: a method for automatic evaluation of machine translation
Proceedings of the 40th annual meeting on association for computational linguis-
tics, Association for Computational Linguistics, 2002, pp. 311-318

[RAH16a] RAHMAN, F,
Recurrent Shop - Framework for building complex recurrent neural networks with
Keras
https://github.com/datalogai/recurrentshop, accessed 20-December-2016, 2016

[RAH16b] RAHMAN, F,
seg2seq - Sequence to sequence library add-on for Keras
https://github.com/farizrahman4u/seq2seq, accessed 20-December-2016, 2016

[RUM86] RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J.,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
In: ed. by RUMELHART, D. E.; MCCLELLAND, J. L.; PDP RESEARCH GROUP, C.,
Cambridge, MA, USA: MIT Press, 1986, chap. Learning Internal Representations
by Error Propagation, pp. 318-362

[SUT14] SUTSKEVER, I.; VINYALS, O.; LE, Q. V.,
Sequence to Sequence Learning with Neural Networks
CoRR abs/1409.3215 (2014)

[TIM14] TIMMARAJU, A.; KHANNA, V.,
Sentiment Analysis on Movie Reviews using Recursive and Recurrent Neural Net-
work Architectures
(2014)

[VIN14] VINYALS, O.; TOSHEV, A.; BENGIO, S.; ERHAN, D.,
Show and Tell: A Neural Image Caption Generator
CoRR abs/1411.4555 (2014)

[VIN15] VINYALS, O.; LE, Q. V,,
A Neural Conversational Model
CoRR abs/1506.05869 (2015)

[WIS17] WISTOFF, N.,

http://wccftech.com/nvidia-pascal-gpu-analysis/

8 Literature 32

Type-Independent Prediction of Traffic Participants at Crossroads with Neuronal
Networks

PhD thesis, RWTH Aachen, 2017

[YAO15] YAO, K.; COHN, T.; VYLOMOVA, K.; DUH, K.; DYER, C.,
Depth-Gated LSTM
CoRR abs/1508.03790 (2015)

9 Appendix

9 Appendix
9.1
tanh
1%
f(z)
0.75 1

0.5 1
025 1

-5 -4 -3 -2 -1
—0.25/+

+ tanh(z) = %
_1 i
sigmoid
1
f(2)
0.75 |
o(z) = 1+i*z
z

-5 -4 -3 -2 -1

Hard sigmoid

15

0.75 1

[(z) = max(0, min(1,0.2 * z + 0.5))

1

-5 -4 -3 -2 -1 0
z

1 2 3 4 5

Attachment B: Neural network activation functions

linear

5 .
| f(2)

4
31
2
1

Z1 +

[(z) = max(0, 2)

-5 -4 -3 -2 -1

1

2

3

Heaviside step function

1

0.75 1

051

0.25 1

4

5

f(2)

T s s

0
z

9 Appendix

34

9.2 Attachment C: Loss functions

The loss functions defines the fitness of the prediction Y on the true datapoints Y. A batch of
predictions of a the recurrent net used is a three-dimensional tensor of shape Y € R*N*2 gnd
Y e RS*¥Nx2 respectively. With S the number of samples and N the length of the sequences.
The two rows in the third dimension represent the x and y-coordinates of one trajectory. Con-
sequently, a sample trajectory is a two-dimensional matrix. This notation also applies for a

radius-alpha vector Y;:

1 1 1 1
x; Y; & @
2 2 2 2
L Yi T g
Vi=| ;| eRY¥? Eq. 91 Y= :
N-1 _N-1 N-1 _N-1
x; Y; T &;
N N N N
x; Y T @

Mean Squared Displacement

A

Lysp(Y,Y) =

0|~
(]
[]=
~ N
8
<
\
K>
N—
no
+
VR
<
S
\
Nty
S
N—
no

Mean Final Displacement

Mean Displacement

MSDOC

S N J k J
Larspoc(YT, Y'Y = % Z Z((Z ¥ cos (Z o?é) — er cos (Z ai—)) +
j k=0
2

Eq.

Eq.

Eq.

9-3

9-5

9-6

9 Appendix 35
9.3 Attachment D: Dataset details
Dataset | Number of trajectories | Average trajectory length [m)] vm,g[kTm] Sampling rate [Hz] | Data points
All 1233 33.22 33.53 9.66 52655
Road 99 47.30 65.86 9.66 4355
City 586 32.89 33.12 9.66 25759
Residential 548 31.04 28.12 9.66 22541
Fig. 9-1: Dataset statistics
9.3.1 Dataset Visualisation

y-coordinate (m]

y-coordinate (m]

Fig. 9-2:

1233 Trajectories

0
x-coordinate [m]

(i) Dataset All

586 Trajeciories

BV —
WA

535%3\%: \
N SN - \ e

x-coordinate [m]

(iii) Dataset City

99 Trajectories

(iv) Dataset Residential

(i) Dataset Road

548 Trajectories

Visualisation of the datasets All, Road, City and Residential

	Introduction
	Content and Structure

	State of the Art
	Prediction of Surround Object Trajectories
	Related models for Sequence Prediction

	Artificial Neural Networks
	Background
	Feedforward Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory Networks
	Prediction Network Architecture
	Sequence to Sequence Model

	Approach and Performance Evaluation
	Approach
	Definition of Performance Evaluation

	Model Design
	Dataset
	Data Pre-processing
	Model Details
	Training & Evaluation
	Learning Strategies
	Stability Analysis

	Results and Evaluation
	Initial Hyperparameter Parameter Search
	Fine Tuning Results
	Prediction Stability

	Conclusion and Outlook
	Literature
	Appendix
	Attachment B: Neural network activation functions
	Attachment C: Loss functions
	Attachment D: Dataset details
	Dataset Visualisation

